cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265162 Decimal expansion of Sum_{k>=1} (-1)^k*log(k)/sqrt(k).

Original entry on oeis.org

1, 9, 3, 2, 8, 8, 8, 3, 1, 6, 3, 9, 2, 8, 2, 7, 3, 8, 9, 6, 4, 6, 1, 5, 4, 5, 9, 3, 5, 5, 2, 3, 8, 1, 1, 4, 2, 9, 5, 2, 7, 0, 2, 2, 2, 5, 2, 9, 2, 2, 1, 9, 9, 2, 2, 9, 3, 6, 0, 4, 8, 1, 0, 3, 3, 4, 4, 0, 1, 6, 6, 6, 4, 4, 4, 4, 6, 8, 9, 8, 7, 3, 4, 9, 8, 6, 8, 0, 9, 2, 0, 8, 7, 7, 7, 8, 1, 6, 3, 6, 8, 4, 5, 7, 2, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 03 2015

Keywords

Comments

Differentiation of Sum_{k>=1} (-1)^k/k^s = -(2^s-2)*zeta(s)/2^s with respect to s gives -Sum_{k>=1} (-1)^k*log(k)/k^s = -2^(1-s)*log(2)*zeta(s) - (1-2^(1-s))*zeta'(s), where zeta(.) and zeta'(.) are the Riemann zeta function and its derivative. - R. J. Mathar, Apr 17 2019, typo in the first formula corrected by Vaclav Kotesovec, Jan 11 2024

Examples

			0.1932888316392827389646154593552381142952702225292219922936048103344...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^k*log(k)/sqrt(k), k=1..infinity), 120);
  • Mathematica
    RealDigits[((3-Sqrt[2])*Log[2]/2 - (Sqrt[2]-1)*(2*EulerGamma + Pi + 2*Log[Pi])/4) * Zeta[1/2], 10, 106][[1]]
    RealDigits[DirichletEta'[1/2], 10, 110][[1]] (* Eric W. Weisstein, Jan 08 2024 *)
  • PARI
    ((3-sqrt(2))*log(2)/2 - (sqrt(2)-1)*(2*Euler + Pi + 2*log(Pi))/4)* zeta(1/2) \\ G. C. Greubel, Apr 15 2018

Formula

Equals ((3-sqrt(2))*log(2)/2 - (sqrt(2)-1)*(2*gamma + Pi + 2*log(Pi))/4) * zeta(1/2), where gamma is the Euler-Mascheroni constant A001620.
A265162/A113024 = gamma/2 + Pi/4 - (1/2 + sqrt(2))*log(2) + log(Pi)/2.