A265187 Nonnegative m for which 2*floor(m^2/11) = floor(2*m^2/11).
0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Magma
[n: n in [0..100] | 2*Floor(n^2/11) eq Floor(2*n^2/11)];
-
Mathematica
Select[Range[0, 100], 2 Floor[#^2/11] == Floor[2 #^2/11] &] Select[Range[0, 100], ! MemberQ[{3, 8}, Mod[#, 11]] &] LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 4, 5, 6, 7, 9, 10, 11}, 80]
-
PARI
is(n)=2*(n^2\11) == (2*n^2)\11 \\ Anders Hellström, Dec 05 2015
-
Sage
[n for n in (0..100) if 2*floor(n^2/11) == floor(2*n^2/11)]
Formula
G.f.: x^2*(1 + x + 2*x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + x^8)/((1 - x)^2*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-1) + a(n-9) - a(n-10) for n>10.
Comments