A037096 Periodic vertical binary vectors computed for powers of 3: a(n) = Sum_{k=0 .. (2^n)-1} (floor((3^k)/(2^n)) mod 2) * 2^k.
1, 2, 0, 204, 30840, 3743473440, 400814250895866480, 192435610587299441243182587501623263200, 2911899996313975217187797869354128351340558818020188112521784134070351919360
Offset: 0
Examples
When powers of 3 are written in binary (see A004656), under each other as: 000000000001 (1) 000000000011 (3) 000000001001 (9) 000000011011 (27) 000001010001 (81) 000011110011 (243) 001011011001 (729) 100010001011 (2187) it can be seen that the bits in the n-th column from the right can be arranged in periods of 2^n: 1, 2, 4, 8, ... This sequence is formed from those bits: 1, is binary for 1, thus a(0) = 1. 01, reversed is 10, which is binary for 2, thus a(1) = 2, 0000 is binary for 0, thus a(2)=0, 000110011, reversed is 11001100 = A007088(204), thus a(3) = 204.
References
- S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..11
- Antti Karttunen, C program for computing this sequence.
- S. Wolfram, A New Kind of Science, Wolfram Media Inc., (2002), p. 119.
Crossrefs
Programs
-
Maple
a(n) := sum( 'bit_n(3^i, n)*(2^i)', 'i'=0..(2^(n))-1); bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2);
Formula
Extensions
Entry revised by Antti Karttunen, Dec 29 2007
Name changed and the example corrected by Antti Karttunen, Dec 05 2015
Comments