cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265234 Number of 4 X n arrays containing n copies of 0..4-1 with no equal vertical neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 43, 2592, 184740, 14439456, 1196114464, 103142395392, 9160513923648, 832211576040960, 76971887847571968, 7223525356855099392, 686117529041422350336, 65834293657115919826944, 6371837299781950752276480
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2015

Keywords

Examples

			Some solutions for n=4:
  0  0  1  2    0  1  0  1    0  1  0  2    0  0  1  2    0  1  1  2
  3  3  0  3    2  3  3  2    2  2  3  3    3  3  3  1    3  2  3  1
  2  0  1  1    1  0  2  3    1  0  1  1    2  1  0  0    1  0  0  0
  1  2  2  3    3  1  0  2    0  3  2  3    3  2  2  1    3  2  3  2
		

Crossrefs

Row 4 of A265232.

Formula

From Manuel Kauers and Christoph Koutschan, Mar 01 2023: (Start)
a(n) = coefficient of x^n*y^n*z^n in (1/24)*(2*x^2 + 6*x*y + 6*x^2*y + 2*y^2 + 6*x*y^2 + 2*x^2*y^2 + 6*x*z + 6*x^2*z + 6*y*z + 24*x*y*z + 6*x^2*y*z + 6*y^2*z + 6*x*y^2*z + 2*z^2 + 6*x*z^2 + 2*x^2*z^2 + 6*y*z^2 + 6*x*y*z^2 + 2*y^2*z^2)^n.
Recurrence of order 6 and degree 6: 5*(n + 5)*(832*n^2 + 5785*n + 8460)*(n + 6)^3*a(n + 6) - 4*(n + 5)*(126464*n^5 + 2941016*n^4 + 26840735*n^3 + 119399663*n^2 + 256228730*n + 208319000)*a(n + 5) + 16*(310336*n^6 + 7680621*n^5 + 78610375*n^4 + 426421788*n^3 + 1294537774*n^2 + 2087600280*n + 1398239904)*a(n + 4) + 128*(n + 4)*(1161472*n^5 + 24822356*n^4 + 207271023*n^3 + 841828441*n^2 + 1653171497*n + 1242989235)*a(n + 3) - 768*(n + 3)*(n + 4)*(3709888*n^4 + 58438003*n^3 + 333112832*n^2 + 813878537*n + 716118600)*a(n + 2) + 9216*(n + 2)*(n + 3)*(n + 4)*(1743872*n^3 + 20496944*n^2 + 74692297*n + 84692065)*a(n + 1) - 34836480*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(832*n^2 + 7449*n + 15077)*a(n) = 0. (End)
a(n) ~ 2^(2*n - 19/2) * 3^(3*n + 7/2) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023