cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A309058 Partitions of n with parts having at most 3 distinct magnitudes.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 72, 91, 115, 145, 177, 215, 258, 308, 364, 424, 491, 568, 651, 742, 838, 940, 1065, 1181, 1320, 1454, 1619, 1757, 1957, 2124, 2329, 2510, 2763, 2934, 3244, 3432, 3752, 3964, 4329, 4531, 4965, 5179, 5627, 5872, 6391, 6577, 7178, 7405
Offset: 0

Views

Author

Nathan McNew, Jul 09 2019

Keywords

Comments

Partitions whose Ferrers diagrams do not contain the pattern 4321 under removal of rows and columns (as defined by Bloom and Saracino).

Examples

			a(10) = 41 because all of the 42 integer partitions of 10 count (i.e., 10 = 10, 10 = 9+1 = 8+1+1, etc.), except the partition 10 = 4+3+2+1.
		

Crossrefs

Cf. A265250 (partitions of n with parts having at most 2 distinct magnitudes). Sum of A002134, A002133 and A000005.
Cf. A116608.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
          `if`(t=1, `if`(irem(n, i)=0, 1, 0)+b(n, i-1, t),
           add(b(n-i*j, i-1, t-`if`(j=0, 0, 1)), j=0..n/i))))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jul 11 2019
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, If[t == 1, If[Mod[n, i] == 0, 1, 0] + b[n, i - 1, t], Sum[b[n - i*j, i - 1, t - If[j == 0, 0, 1]], {j, 0, n/i}]]]];
    a[n_] := b[n, n, 3];
    a /@ Range[0, 100] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{i>=1} x^i/(1-x^i) + Sum_{j=1..i-1} x^(i+j)/((1-x^i)*(1-x^j)) + Sum_{k=1..j-1} x^(i+j+k)/((1-x^i)*(1-x^j)*(1-x^k)).
a(n) = Sum_{k=0..3} A116608(n,k). - Alois P. Heinz, Jul 11 2019

A364809 Number of partitions of n with at most five part sizes.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 791, 1000, 1250, 1565, 1938, 2400, 2945, 3615, 4395, 5342, 6439, 7755, 9268, 11069, 13127, 15537, 18286, 21484, 25095, 29275, 33968, 39344, 45362, 52193, 59836, 68441, 78014, 88724, 100622, 113828
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2023

Keywords

Crossrefs

Programs

  • Python
    from sympy.utilities.iterables import partitions
    def A364809(n): return sum(1 for p in partitions(n) if len(p)<=5) # Chai Wah Wu, Sep 14 2023

Formula

a(n) = Sum_{k=1..5} A116608(n,k).

A265249 Triangle read by rows: T(n,k) is the number of partitions of n having k parts strictly between the smallest and the largest part (n>=1, k>=0).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 1, 13, 2, 17, 4, 1, 20, 8, 2, 26, 11, 4, 1, 29, 17, 8, 2, 35, 24, 13, 4, 1, 39, 33, 19, 8, 2, 48, 39, 30, 13, 4, 1, 48, 56, 41, 21, 8, 2, 60, 64, 57, 32, 13, 4, 1, 61, 83, 75, 47, 21, 8, 2, 74, 94, 100, 65, 34, 13, 4, 1
Offset: 1

Views

Author

Emeric Deutsch, Dec 25 2015

Keywords

Comments

Number of entries in row n is floor((n-4)/2) (n>=4).
Sum of entries of row n = A000041(n) = number of partitions of n.
T(n,0) = A265250(n).
Sum(k*T(n,k), k>=0) = A182977(n).

Examples

			T(8,2) = 1 because among the 22 partitions of 8 only [3,2,2,1] has 2 parts strictly between the smallest and the largest part.
Triangle starts:
1;
2;
3;
5;
7;
10, 1;
13, 2;
		

Crossrefs

Programs

  • Maple
    g := add(x^i/(1-x^i), i=1..80)+add(add(x^(i+j)/((1-x^i)*(1-x^j)*mul(1-t*x^k, k=i+1..j-1)),j=i+1..80),i=1..80): gser := simplify(series(g,x=0,23)): for n to 22 do P[n]:= sort(coeff(gser,x,n)) end do: for n to 22 do seq(coeff(P[n],t,k), k=0..degree(P[n])) end do; # yields sequence in triangular form

Formula

G.f.: G(t,x) = Sum_{i>=1} x^i/(1-x^i) + Sum_{i>=1} Sum_{j>=i+1} x^(i+j)/(1-x^i)/(1-x^j)/Product_{k=i+1..j-1} (1-tx^k).

A364793 Number of partitions of n with at most four part sizes.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 175, 229, 292, 375, 470, 591, 733, 905, 1103, 1343, 1615, 1938, 2309, 2726, 3211, 3758, 4379, 5069, 5865, 6716, 7694, 8769, 9967, 11254, 12732, 14264, 16025, 17877, 19959, 22149, 24605, 27147, 30012, 33006, 36294, 39742, 43573, 47524
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2023

Keywords

Crossrefs

Programs

  • Python
    from sympy.utilities.iterables import partitions
    def A364793(n): return sum(1 for p in partitions(n) if len(p)<=4) # Chai Wah Wu, Sep 14 2023

Formula

a(n) = Sum_{k=1..4} A116608(n,k).
Showing 1-4 of 4 results.