cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265251 Number of partitions of n such that there is exactly one part which occurs three times, while all other parts occur only once.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 2, 2, 4, 6, 6, 9, 10, 14, 19, 22, 26, 35, 40, 50, 63, 74, 88, 107, 127, 150, 181, 213, 249, 296, 345, 401, 473, 546, 636, 741, 853, 983, 1138, 1306, 1498, 1722, 1967, 2247, 2574, 2925, 3327, 3788, 4294, 4866, 5516, 6233, 7036, 7947, 8953
Offset: 0

Views

Author

Emeric Deutsch, Dec 28 2015

Keywords

Comments

Conjecture: a(n) is also the difference between the number of parts in the distinct partitions of n and the number of distinct parts in the odd partitions of n (offset 0). For example, if n = 5, there are 5 parts in the distinct partitions of 5 (5, 41, 32) and 4 distinct parts in the odd partitions of 5 (namely, 5,3,1,1 in 5,311,11111) with difference 1. - George Beck, Apr 22 2017
George E. Andrews has kindly informed me that he has proved this conjecture and the result will be included in his article "Euler's Partition Identity and Two Problems of George Beck" which will appear in The Mathematics Student, 86, Nos. 1-2, January - June (2017). - George Beck, Apr 23 2017

Examples

			a(9) = 4 because we have [2,2,2,3], [3,3,3], [1,1,1,2,4], and [1,1,1,6].
		

Crossrefs

Column k=3 of A266477.

Programs

  • Maple
    g := add(x^(3*k)/(1+x^k), k = 1 .. 100)*mul(1+x^i, i = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, m), m = 0 .. 75);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+5-4*t)/2, 0,
         `if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
         `if`(t=1 or 3*i>n, 0, b(n-3*i, i-1, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 5 - 4*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t] + If[t == 1 || 3*i > n, 0, b[n - 3*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 11 2016, after Alois P. Heinz *)
    Take[ CoefficientList[ Expand[ Sum[x^(3k)/(1 + x^k), {k, 60}] Product[1 + x^i, {i, 60}]], x], 60] (* slower than above *) (* Robert G. Wilson v, Apr 24 2017 *)
  • PARI
    x='x + O('x^54); concat([0, 0, 0],Vec(sum(k=1, 54, x^(3*k)/(1 + x^k)* prod(i=1, 54, 1 + x^i)))) \\ Indranil Ghosh, Apr 24 2017

Formula

G.f.: Sum_{k>=1} x^{3k}/(1+x^k)*Product_{i>=1} (1+x^i).
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(1/4), where c = 3^(1/4) * (2*log(2) - 1) / (4*Pi) = 0.040456547528... - Vaclav Kotesovec, May 24 2018