cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A266477 Triangle read by rows in which T(n,k) is the number of partitions of n with product of multiplicities of parts equal to k; n>=0, 1<=k<=A266480(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 4, 2, 2, 2, 0, 1, 5, 4, 2, 1, 1, 1, 1, 6, 6, 2, 3, 1, 2, 0, 2, 8, 7, 4, 4, 1, 2, 1, 0, 2, 1, 10, 8, 6, 6, 3, 2, 1, 3, 0, 1, 0, 2, 12, 13, 6, 6, 3, 7, 1, 2, 1, 1, 1, 1, 0, 1, 1, 15, 15, 9, 11, 3, 6, 2, 5, 3, 3, 0
Offset: 0

Views

Author

Emeric Deutsch and Alois P. Heinz, Dec 29 2015

Keywords

Comments

Sum of entries in row n = A000041(n) = number of partitions of n.
T(n,1) = A000009(n) = number of partitions of n into distinct parts.
T(n,2) = A090858(n).
T(n,3) = A265251(n).
Smallest row m >= 0 with T(m,n) > 0 is A266325(n).
T(n,A266480(n)) gives A266871(n).

Examples

			Row 4 is [2,2,0,1]. Indeed, the products of the multiplicities of the parts in the partitions [4], [1,3], [2,2], [1,1,2], [1,1,1,1] are 1, 1, 2, 2, 4, respectively.
Triangle T(n,k) begins:
00 :  1;
01 :  1;
02 :  1,  1;
03 :  2,  0, 1;
04 :  2,  2, 0,  1;
05 :  3,  2, 1,  0, 1;
06 :  4,  2, 2,  2, 0, 1;
07 :  5,  4, 2,  1, 1, 1, 1;
08 :  6,  6, 2,  3, 1, 2, 0, 2;
09 :  8,  7, 4,  4, 1, 2, 1, 0, 2, 1;
10 : 10,  8, 6,  6, 3, 2, 1, 3, 0, 1, 0, 2;
11 : 12, 13, 6,  6, 3, 7, 1, 2, 1, 1, 1, 1, 0, 1, 1;
12 : 15, 15, 9, 11, 3, 6, 2, 5, 3, 3, 0, 2, 0, 0, 0, 2, 0, 1;
		

Crossrefs

Main diagonal gives A266499.
Row lengths give A266480.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          x^max(p, p*n), add(b(n-i*j, i-1, max(p, p*j)), j=0..n/i))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2, 1)):
    seq(T(n), n=0..16);
  • Mathematica
    Map[Table[Length@ Position[#, k], {k, Max@ #}] &, #] &@ Table[Map[Times @@ Map[Last, Tally@ #] &, IntegerPartitions@ n], {n, 12}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, x^Max[p, p*n], Sum[b[n - i*j, i - 1, Max[p, p*j]], {j, 0, n/i}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p,x]}]][ b[n, n, 1]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

Sum_{k>=1} k*T(n,k) = A077285(n).
G.f. of column p if p is prime: Sum_{k>0} x^(p*k)/(1+x^k) * Product_{i>0} (1+x^i), giving the number of partitions of n such that there is exactly one part which occurs p times, while all other parts occur only once.
If p is prime then column p is asymptotic to 3^(1/4) * c(p) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)), where c(p) = Sum_{j>=0} (-1)^j/(j+p) = (PolyGamma((p+1)/2) - PolyGamma(p/2))/2. - Vaclav Kotesovec, May 24 2018

A090858 Number of partitions of n such that there is exactly one part which occurs twice, while all other parts occur only once.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 2, 4, 6, 7, 8, 13, 15, 21, 25, 30, 39, 50, 58, 74, 89, 105, 129, 156, 185, 221, 264, 309, 366, 433, 505, 593, 696, 805, 941, 1090, 1258, 1458, 1684, 1933, 2225, 2555, 2922, 3346, 3823, 4349, 4961, 5644, 6402, 7267, 8234, 9309, 10525, 11886, 13393
Offset: 0

Views

Author

Vladeta Jovovic, Feb 12 2004

Keywords

Comments

Number of solutions (p(1),p(2),...,p(n)), p(i)>=0,i=1..n, to p(1)+2*p(2)+...+n*p(n)=n such that |{i: p(i)<>0}| = p(1)+p(2)+...+p(n)-1.
Also number of partitions of n such that if k is the largest part, then, with exactly one exception, all the integers 1,2,...,k occur as parts. Example: a(7)=4 because we have [4,2,1], [3,3,1], [3,2,2] and [3,1,1,1,1]. - Emeric Deutsch, Apr 18 2006

Examples

			a(7) = 4 because we have 4 such partitions of 7: [1,1,2,3], [1,1,5], [2,2,3], [1,3,3].
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(2) = 1 through a(11) = 13 partitions described in the name are the following (empty columns not shown). The Heinz numbers of these partitions are given by A060687.
  (11)  (22)   (221)  (33)   (322)   (44)    (441)   (55)    (443)
        (211)  (311)  (411)  (331)   (332)   (522)   (433)   (533)
                             (511)   (422)   (711)   (442)   (551)
                             (3211)  (611)   (3321)  (622)   (722)
                                     (3221)  (4221)  (811)   (911)
                                     (4211)  (4311)  (5221)  (4322)
                                             (5211)  (5311)  (4331)
                                                     (6211)  (4421)
                                                             (5411)
                                                             (6221)
                                                             (6311)
                                                             (7211)
                                                             (43211)
The a(2) = 1 through a(10) = 8 partitions described in Emeric Deutsch's comment are the following (empty columns not shown). The Heinz numbers of these partitions are given by A325284.
  (2)  (22)  (32)   (222)   (322)    (332)     (432)      (3322)
       (31)  (311)  (3111)  (331)    (431)     (3222)     (3331)
                            (421)    (2222)    (4221)     (22222)
                            (31111)  (3311)    (4311)     (42211)
                                     (4211)    (33111)    (43111)
                                     (311111)  (42111)    (331111)
                                               (3111111)  (421111)
                                                          (31111111)
(End)
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(k*(k+1)/2)*((1-x^k)/x^(k-1)/(1-x)-k)/product(1-x^i,i=1..k),k=1..15): gser:=series(g,x=0,64): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 18 2006
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+3-2*t)/2, 0,
         `if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
         `if`(t=1 or 2*i>n, 0, b(n-2*i, i-1, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 3 - 2*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0,  b[n - i, i - 1, t] + If[t == 1 || 2*i > n, 0, b[n - 2*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[#]-Length[Union[#]]==1&]],{n,0,30}] (* Gus Wiseman, Apr 19 2019 *)
  • PARI
    alist(n)=concat([0,0],Vec(sum(k=1,n\2,(x^(2*k)+x*O(x^n))/(1+x^k)*prod(j=1,n-2*k,1+x^j+x*O(x^n))))) \\ Franklin T. Adams-Watters, Nov 02 2015

Formula

G.f.: Sum_{k>0} x^(2*k)/(1+x^k) * Product_{k>0} (1+x^k). Convolution of 1-A048272(n) and A000009(n). a(n) = A036469(n) - A015723(n).
G.f.: sum(x^(k(k+1)/2)[(1-x^k)/x^(k-1)/(1-x)-k]/product(1-x^i,i=1..k), k=1..infinity). - Emeric Deutsch, Apr 18 2006
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(1/4), where c = 3^(1/4) * (1 - log(2)) / (2*Pi) = 0.064273294789... - Vaclav Kotesovec, May 24 2018

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 26 2004
a(0) added by Franklin T. Adams-Watters, Nov 02 2015

A090867 Number of partitions of n such that the set of even parts has only one element.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 9, 13, 18, 23, 32, 42, 55, 69, 89, 112, 141, 175, 217, 266, 326, 396, 480, 581, 697, 834, 996, 1183, 1402, 1660, 1954, 2297, 2694, 3150, 3674, 4280, 4970, 5762, 6669, 7701, 8876, 10219, 11737, 13460, 15418, 17628, 20125, 22951, 26128, 29709
Offset: 0

Views

Author

Vladeta Jovovic, Feb 12 2004

Keywords

Comments

Conjecture: a(n) is also the difference between the number of parts in the odd partitions of n and the number of parts in the distinct partitions of n (offset 0). For example, if n = 5, there are 9 parts in the odd partitions of 5 (5, 311, 11111) and 5 parts in the distinct partitions of 5 (5, 41, 32), with difference 4. - George Beck, Apr 22 2017
George E. Andrews has kindly informed me that he has proved this conjecture and the result will be included in his article "Euler's Partition Identity and Two Problems of George Beck" which will appear in The Mathematics Student, 86, Nos. 1-2, January - June (2017). - George Beck, Apr 23 2017
a(n) is the number of partitions of n with exactly one repeated part. - Andrew Howroyd, Feb 14 2021

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
          b(n, i-1, t)+`if`(i>n or t=1 and i::even, 0,
          add(b(n-i*j, i-1, `if`(i::even, 1, t)), j=1..n/i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jun 17 2016
    A090867 := proc(n)
        add(numtheory[tau](k)*A000009(n-2*k),k=1..n/2) ;
    end proc: # R. J. Mathar, Jun 18 2016
  • Mathematica
    f[n_] := Count[ Plus @@@ Mod[ Union /@ IntegerPartitions[n] + 1, 2], 1]; Table[ f[n], {n, 0, 50}] (* Robert G. Wilson v, Feb 16 2004 *)
    a[n_] := Sum[DivisorSigma[0, k] PartitionsQ[n-2k], {k, 1, n/2}];
    a /@ Range[0, 70] (* Jean-François Alcover, May 24 2021, after R. J. Mathar *)
  • PARI
    seq(n)={Vec(sum(k=1, n\2, x^(2*k)/(1-x^(2*k)) + O(x*x^n))/prod(k=1, n\2, 1-x^(2*k-1) + O(x*x^n)), -(n+1))} \\ Andrew Howroyd, Feb 13 2021

Formula

G.f.: Sum_{m>0} x^(2*m)/(1-x^(2*m))/Product_{m>0} (1-x^(2*m-1)).
a(n) ~ 3^(1/4) * (2*gamma + log(3*n/Pi^2)) * exp(Pi*sqrt(n/3)) / (8*Pi*n^(1/4)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 25 2018
a(n) = A341494(n) + A341495(n) = A341496(n) + A341497(n). - Andrew Howroyd, Feb 14 2021

Extensions

More terms from Robert G. Wilson v, Feb 16 2004
Showing 1-3 of 3 results.