A266477
Triangle read by rows in which T(n,k) is the number of partitions of n with product of multiplicities of parts equal to k; n>=0, 1<=k<=A266480(n).
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 4, 2, 2, 2, 0, 1, 5, 4, 2, 1, 1, 1, 1, 6, 6, 2, 3, 1, 2, 0, 2, 8, 7, 4, 4, 1, 2, 1, 0, 2, 1, 10, 8, 6, 6, 3, 2, 1, 3, 0, 1, 0, 2, 12, 13, 6, 6, 3, 7, 1, 2, 1, 1, 1, 1, 0, 1, 1, 15, 15, 9, 11, 3, 6, 2, 5, 3, 3, 0
Offset: 0
Row 4 is [2,2,0,1]. Indeed, the products of the multiplicities of the parts in the partitions [4], [1,3], [2,2], [1,1,2], [1,1,1,1] are 1, 1, 2, 2, 4, respectively.
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 1, 1;
03 : 2, 0, 1;
04 : 2, 2, 0, 1;
05 : 3, 2, 1, 0, 1;
06 : 4, 2, 2, 2, 0, 1;
07 : 5, 4, 2, 1, 1, 1, 1;
08 : 6, 6, 2, 3, 1, 2, 0, 2;
09 : 8, 7, 4, 4, 1, 2, 1, 0, 2, 1;
10 : 10, 8, 6, 6, 3, 2, 1, 3, 0, 1, 0, 2;
11 : 12, 13, 6, 6, 3, 7, 1, 2, 1, 1, 1, 1, 0, 1, 1;
12 : 15, 15, 9, 11, 3, 6, 2, 5, 3, 3, 0, 2, 0, 0, 0, 2, 0, 1;
-
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
x^max(p, p*n), add(b(n-i*j, i-1, max(p, p*j)), j=0..n/i))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2, 1)):
seq(T(n), n=0..16);
-
Map[Table[Length@ Position[#, k], {k, Max@ #}] &, #] &@ Table[Map[Times @@ Map[Last, Tally@ #] &, IntegerPartitions@ n], {n, 12}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, x^Max[p, p*n], Sum[b[n - i*j, i - 1, Max[p, p*j]], {j, 0, n/i}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p,x]}]][ b[n, n, 1]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
A090858
Number of partitions of n such that there is exactly one part which occurs twice, while all other parts occur only once.
Original entry on oeis.org
0, 0, 1, 0, 2, 2, 2, 4, 6, 7, 8, 13, 15, 21, 25, 30, 39, 50, 58, 74, 89, 105, 129, 156, 185, 221, 264, 309, 366, 433, 505, 593, 696, 805, 941, 1090, 1258, 1458, 1684, 1933, 2225, 2555, 2922, 3346, 3823, 4349, 4961, 5644, 6402, 7267, 8234, 9309, 10525, 11886, 13393
Offset: 0
a(7) = 4 because we have 4 such partitions of 7: [1,1,2,3], [1,1,5], [2,2,3], [1,3,3].
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(2) = 1 through a(11) = 13 partitions described in the name are the following (empty columns not shown). The Heinz numbers of these partitions are given by A060687.
(11) (22) (221) (33) (322) (44) (441) (55) (443)
(211) (311) (411) (331) (332) (522) (433) (533)
(511) (422) (711) (442) (551)
(3211) (611) (3321) (622) (722)
(3221) (4221) (811) (911)
(4211) (4311) (5221) (4322)
(5211) (5311) (4331)
(6211) (4421)
(5411)
(6221)
(6311)
(7211)
(43211)
The a(2) = 1 through a(10) = 8 partitions described in Emeric Deutsch's comment are the following (empty columns not shown). The Heinz numbers of these partitions are given by A325284.
(2) (22) (32) (222) (322) (332) (432) (3322)
(31) (311) (3111) (331) (431) (3222) (3331)
(421) (2222) (4221) (22222)
(31111) (3311) (4311) (42211)
(4211) (33111) (43111)
(311111) (42111) (331111)
(3111111) (421111)
(31111111)
(End)
-
g:=sum(x^(k*(k+1)/2)*((1-x^k)/x^(k-1)/(1-x)-k)/product(1-x^i,i=1..k),k=1..15): gser:=series(g,x=0,64): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 18 2006
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n>i*(i+3-2*t)/2, 0,
`if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
`if`(t=1 or 2*i>n, 0, b(n-2*i, i-1, 1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..100); # Alois P. Heinz, Dec 28 2015
-
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 3 - 2*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t] + If[t == 1 || 2*i > n, 0, b[n - 2*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n],Length[#]-Length[Union[#]]==1&]],{n,0,30}] (* Gus Wiseman, Apr 19 2019 *)
-
alist(n)=concat([0,0],Vec(sum(k=1,n\2,(x^(2*k)+x*O(x^n))/(1+x^k)*prod(j=1,n-2*k,1+x^j+x*O(x^n))))) \\ Franklin T. Adams-Watters, Nov 02 2015
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 26 2004
A090867
Number of partitions of n such that the set of even parts has only one element.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 6, 9, 13, 18, 23, 32, 42, 55, 69, 89, 112, 141, 175, 217, 266, 326, 396, 480, 581, 697, 834, 996, 1183, 1402, 1660, 1954, 2297, 2694, 3150, 3674, 4280, 4970, 5762, 6669, 7701, 8876, 10219, 11737, 13460, 15418, 17628, 20125, 22951, 26128, 29709
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Alois P. Heinz)
- Tewodros Amdeberhan, George E. Andrews, and Cristina Ballantine, Refinements of Beck-type partition identities, arXiv:2204.00105 [math.CO], 2022.
- George E. Andrews, Euler's Partition Identity and Two Problems of George Beck, The Mathematics Student, 86, 1-2:115-119 (2017); Preprint.
- Cristina Ballantine and Richard Bielak, Combinatorial proofs of two Euler type identities due to Andrews, arXiv:1803.06394 [math.CO], 2018.
- Cristina Ballantine and Amanda Welch, Beck-type identities for Euler pairs of order r, arXiv:2006.02335 [math.NT], 2020.
- Cristina Ballantine and Amanda Welch, Beck-type identities: new combinatorial proofs and a theorem for parts congruent to t mod r, arXiv:2011.08220 [math.CO], 2020.
- Cristina Ballantine and Amanda Welch, Beck-type companion identities for Franklin's identity, arXiv:2101.06260 [math.CO], 2021.
- Cristina Ballantine and Amanda Welch, Beck-type identities: new combinatorial proofs and a modular refinement, Ramanujan J. (2021).
- Cristina Ballantine and Mircea Merca, Combinatorial proofs of two theorems related to the number of even parts in all partitions of n into distinct parts, Ramanujan J., 54:1 (2021), 107-112.
- Cristina Ballantine, Hannah E. Burson, Amanda Folsom, Chi-Yun Hsu, Isabella Negrini and Boya Wen, On a Partition Identity of Lehmer, arXiv:2109.00609 [math.CO], 2021.
- Cristina Ballantine and Amanda Folsom, On the number of parts in all partitions enumerated by the Rogers-Ramanujan identities, arXiv:2303.03330 [math.NT], 2023.
- Shishuo Fu and Dazhao Tang, Generalizing a partition theorem of Andrews, arXiv:1705.05046 [math.CO], 2017.
- Gabriel Gray, Emily Payne, and Ren Watson, Generalized partition identities and fixed perimeter analogues, Oregon State Univ. (2024). See pp. 2, 49.
- Gabriel Gray, David Hovey, Brandt Kronholm, Emily Payne, Holly Swisher, and Ren Watson, A generalization of Franklin's partition identity and a Beck-type companion identity, arXiv:2410.17378 [math.NT], 2024. See p. 12. See also Ramanujan J. (2025) Volume 67, Art. No. 100.
- Gabriel Gray, Emily Payne, Holly Swisher, and Ren Watson, Fixed perimeter analogues of some partition results, arXiv:2502.12394 [math.CO], 2025. See p. 15.
- Jia Huang, Compositions with restricted parts, arXiv:1812.11010 [math.CO], 2018. Also Discrete Masth., 343 (2020), # 111875.
- Runqiao Li and Andrew Y. Z. Wang, The dual form of Beck type identities, Ramanujan J. (2021).
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75.
- Mircea Merca, On the partitions into distinct parts and odd parts, arXiv:2005.03619 [math.CO], 2020.
- Aritro Pathak, On certain partition bijections related to Euler's partition problem, arXiv:2004.03596 [math.CO], 2020. Also Discrete Mathematics 345.2 (2022): 112673.
- Jane Y. X. Yang, Combinatorial proofs and generalizations on conjectures related with Euler's partition theorem, arXiv:1801.06815 [math.CO], 2018.
-
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
b(n, i-1, t)+`if`(i>n or t=1 and i::even, 0,
add(b(n-i*j, i-1, `if`(i::even, 1, t)), j=1..n/i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..70); # Alois P. Heinz, Jun 17 2016
A090867 := proc(n)
add(numtheory[tau](k)*A000009(n-2*k),k=1..n/2) ;
end proc: # R. J. Mathar, Jun 18 2016
-
f[n_] := Count[ Plus @@@ Mod[ Union /@ IntegerPartitions[n] + 1, 2], 1]; Table[ f[n], {n, 0, 50}] (* Robert G. Wilson v, Feb 16 2004 *)
a[n_] := Sum[DivisorSigma[0, k] PartitionsQ[n-2k], {k, 1, n/2}];
a /@ Range[0, 70] (* Jean-François Alcover, May 24 2021, after R. J. Mathar *)
-
seq(n)={Vec(sum(k=1, n\2, x^(2*k)/(1-x^(2*k)) + O(x*x^n))/prod(k=1, n\2, 1-x^(2*k-1) + O(x*x^n)), -(n+1))} \\ Andrew Howroyd, Feb 13 2021
Showing 1-3 of 3 results.
Comments