cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A038348 Expansion of (1/(1-x^2))*Product_{m>=0} 1/(1-x^(2m+1)).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 24, 31, 39, 49, 61, 76, 93, 114, 139, 168, 203, 244, 292, 348, 414, 490, 579, 682, 801, 938, 1097, 1278, 1487, 1726, 1999, 2311, 2667, 3071, 3531, 4053, 4644, 5313, 6070, 6923, 7886, 8971, 10190, 11561
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n+2 with exactly one even part. - Vladeta Jovovic, Sep 10 2003
Also, number of partitions of n with at most one even part. - Vladeta Jovovic, Sep 10 2003
Also total number of parts, counted without multiplicity, in all partitions of n into odd parts, offset 1. - Vladeta Jovovic, Mar 27 2005
a(n) = Sum_{k>=1} k*A116674(n+1,k). - Emeric Deutsch, Feb 22 2006
Equals row sums of triangle A173305. - Gary W. Adamson, Feb 15 2010
Equals partial sums of A025147 (observed by Jonathan Vos Post, proved by several correspondents).
Conjecture: The n-th derivative of Gamma(x+1) at x = 0 has a(n+1) terms. For example, d^4/dx^4_(x = 0) Gamma(x+1) = 8*eulergamma*zeta(3) + eulergamma^4 + eulergamma^2*Pi^2 + 3*Pi^4/20 which has a(5) = 4 terms. - David Ulgenes, Dec 05 2023

Examples

			From _Gus Wiseman_, Sep 23 2019: (Start)
Also the number of integer partitions of n that are strict except possibly for any number of 1's. For example, the a(1) = 1 through a(7) = 11 partitions are:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (31)    (32)     (42)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (311)    (321)     (61)
                            (2111)   (411)     (421)
                            (11111)  (3111)    (511)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (31111)
                                               (211111)
                                               (1111111)
(End)
		

Crossrefs

Programs

  • Maple
    f:=1/(1-x^2)/product(1-x^(2*j-1),j=1..32): fser:=series(f,x=0,62): seq(coeff(fser,x,n),n=0..58); # Emeric Deutsch, Feb 22 2006
  • Mathematica
    mmax = 47; CoefficientList[ Series[ (1/(1-x^2))*Product[1/(1-x^(2m+1)), {m, 0, mmax}], {x, 0, mmax}], x] (* Jean-François Alcover, Jun 21 2011 *)
  • SageMath
    # uses[EulerTransform from A166861]
    def g(n): return n % 2 if n > 2 else 1
    a = EulerTransform(g)
    print([a(n) for n in range(48)]) # Peter Luschny, Dec 04 2020

Formula

a(n) = A036469(n) - a(n-1) = Sum_{k=0..n} (-1)^k*A036469(n-k). - Vladeta Jovovic, Sep 10 2003
a(n) = A000009(n) + a(n-2). - Vladeta Jovovic, Feb 10 2004
G.f.: 1/((1-x^2)*Product_{j>=1} (1 - x^(2*j-1))). - Emeric Deutsch, Feb 22 2006
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ (1/2) * A036469(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). (End)
Euler transform of the sequence [1, 1, period(1, 0)] (A266591). - Georg Fischer, Dec 04 2020

A116676 Number of odd parts in all partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 0, 2, 2, 3, 4, 5, 8, 10, 14, 16, 22, 26, 34, 43, 54, 64, 80, 96, 116, 142, 170, 202, 242, 288, 340, 404, 474, 556, 652, 762, 886, 1034, 1198, 1389, 1606, 1852, 2132, 2454, 2814, 3224, 3690, 4214, 4804, 5478, 6228, 7072, 8028, 9094, 10290, 11635, 13134
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Comments

a(n) = Sum(k*A116675(n,k), k>=0).

Examples

			a(9) = 10 because in the partitions of 9 into distinct parts, namely, [9], [81], [72], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2], we have a total of 10 odd parts.
		

Crossrefs

Programs

  • Maple
    f:=product(1+x^j,j=1..64)*sum(x^(2*j-1)/(1+x^(2*j-1)),j=1..35): fser:=series(f,x=0,60): seq(coeff(fser,x,n),n=0..56);
    # second Maple program:
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 0] elif i<1 then [0, 0]
        else f:=b(n, i-1); g:=`if`(i>n, [0, 0], b(n-i, min(n-i, i-1)));
             [f[1]+g[1], f[2]+g[2] +irem(i, 2)*g[1]]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 21 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, Which [n == 0, {1, 0}, i<1 , {0, 0}, True, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, Min[n-i, i-1]]]; {f[[1]] + g[[1]],       f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]; Table [a[n], {n, 0, 60}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)

Formula

G.f.: product(1+x^j, j=1..infinity)*sum(x^(2j-1)/(1+x^(2j-1)), j=1..infinity).
For n > 0, a(n) = A015723(n) - A116680(n). - Vaclav Kotesovec, May 26 2018
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018

A116680 Number of even parts in all partitions of n into distinct parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 4, 5, 5, 8, 11, 14, 18, 23, 29, 37, 44, 55, 69, 83, 102, 124, 148, 178, 213, 253, 300, 356, 421, 494, 582, 680, 793, 926, 1074, 1246, 1446, 1668, 1922, 2215, 2545, 2918, 3345, 3823, 4366, 4982, 5668, 6445, 7321, 8300, 9401, 10639, 12021, 13566
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Examples

			a(9)=8 because in the partitions of 9 into distinct parts, namely, [9], [8,1], [7,2], [6,3], [6,2,1], [5,4], [5,3,1], and [4,3,2], we have a total of 8 even parts. [edited by _Rishi Advani_, Jun 07 2019]
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), 3*m); [0,0] cat Coefficients(R!( (&*[1+x^j: j in [1..4*m]])*(&+[x^(2*k)/(1+x^(2*k)): k in [1..2*m]]) )); // G. C. Greubel, Jun 07 2019
    
  • Maple
    f:=product(1+x^j,j=1..70)*sum(x^(2*j)/(1+x^(2*j)),j=1..40): fser:=series(f,x=0,65): seq(coeff(fser,x,n),n=0..60);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 p+`if`(i::odd, 0, [0, p[1]]))(b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, May 24 2022
  • Mathematica
    With[{m = 25}, CoefficientList[Series[Product[1+x^j, {j,1,4*m}]* Sum[x^(2*k)/(1+x^(2*k)), {k,1,2*m}], {x,0,3*m}], x]] (* G. C. Greubel, Jun 07 2019 *)
  • PARI
    my(m=25); my(x='x+O('x^(3*m))); concat([0, 0], Vec( prod(j=1, 4*m, 1+x^j)*sum(k=1, 2*m, x^(2*k)/(1+x^(2*k))) )) \\ G. C. Greubel, Jun 07 2019
    
  • Sage
    m = 25
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(3*m)
    s = product(1+x^j for j in (1..4*m))*sum(x^(2*k)/(1+x^(2*k)) for k in (1..2*m))
    [0, 0] + s.coefficients() # G. C. Greubel, Jun 07 2019

Formula

a(n) = Sum_{k >= 0} k*A116679(n,k).
G.f.: (Product_{j >= 1} (1+x^j)) * (Sum_{k >= 1} x^(2*k)/(1+x^(2*k))).
For n > 0, a(n) = A015723(n) - A116676(n). - Vaclav Kotesovec, May 26 2018
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018

A305082 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k).

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 20, 28, 39, 54, 71, 94, 124, 159, 201, 258, 322, 401, 499, 613, 750, 918, 1110, 1340, 1617, 1935, 2308, 2752, 3261, 3854, 4554, 5350, 6273, 7348, 8572, 9983, 11612, 13460, 15578, 18007, 20761, 23894, 27473, 31511, 36090, 41296, 47152, 53767
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A000005 and A000009.
Apart from initial zero this is the convolution of A341062 and A036469. - Omar E. Pol, Feb 16 2021

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}]*Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[((Log[1-x] + QPolyGamma[0, 1, x]) * QPochhammer[-1, x]) / (2*Log[x]), {x, 0, nmax}], x]

Formula

a(n) ~ 3^(1/4)*(2*gamma + log(12*n/Pi^2)) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)), where gamma is the Euler-Mascheroni constant A001620.

A341494 Number of partitions of n into an even number of parts such that the set of even parts has only one element.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 1, 7, 4, 13, 6, 23, 12, 39, 20, 63, 34, 98, 53, 150, 82, 225, 124, 329, 184, 475, 267, 676, 381, 948, 539, 1317, 752, 1810, 1038, 2460, 1417, 3319, 1920, 4442, 2578, 5897, 3437, 7780, 4547, 10200, 5980, 13285, 7815, 17214, 10154, 22191, 13122
Offset: 0

Views

Author

Andrew Howroyd, Feb 13 2021

Keywords

Examples

			The a(3) = 1 partition is: 1+2.
The a(4) = 1 partition is: 2+2.
The a(5) = 3 partitions are: 1+4, 2+3, 1+1+1+2.
		

Crossrefs

Programs

  • Mathematica
    P[n_, c_] := c*Sum[x^(2k)/(1 - c*x^(2k)) + O[x]^n, {k, 1, n/2}]/
         Product[1 - c*x^(2k - 1) + O[x]^n, {k, 1, n/2}];
    CoefficientList[(P[100, 1] + P[100, -1])/2, x] (* Jean-François Alcover, May 24 2021, from PARI code *)
  • PARI
    P(n,c)={c*sum(k=1, n\2, x^(2*k)/(1-c*x^(2*k)) + O(x*x^n))/prod(k=1, n\2, 1-c*x^(2*k-1) + O(x*x^n))}
    seq(n)={Vec(P(n,1) + P(n,-1), -(n+1))/2}

Formula

G.f.: (P(x,1) + P(x,-1))/2 where P(x,c) = (Sum_{k>=1} c*x^(2*k)/(1-c*x^(2*k))) / (Product_{k>=1} 1-c*x^(2*k-1)).
a(n) = A090867(n) - A341495(n).

A341495 Number of partitions of n into an odd number of parts such that the set of even parts has only one element.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 5, 2, 9, 5, 17, 9, 30, 16, 49, 26, 78, 43, 122, 67, 184, 101, 272, 151, 397, 222, 567, 320, 802, 454, 1121, 637, 1545, 884, 2112, 1214, 2863, 1651, 3842, 2227, 5123, 2979, 6782, 3957, 8913, 5218, 11648, 6840, 15136, 8914, 19555, 11552, 25143
Offset: 0

Views

Author

Andrew Howroyd, Feb 13 2021

Keywords

Examples

			The a(2) = 1 partition is: 2.
The a(4) = 2 partitions are: 4, 1+1+2.
The a(5) = 1 partition is: 1+2+2.
The a(6) = 5 partitions are: 6, 1+1+4, 1+2+3, 2+2+2, 1+1+1+1+2.
		

Crossrefs

Programs

  • Mathematica
    P[n_, c_] := c*Sum[x^(2k)/(1 - c*x^(2k)) + O[x]^n, {k, 1, n/2}]/
         Product[1 - c*x^(2k - 1) + O[x]^n, {k, 1, n/2}];
    CoefficientList[(P[100, 1] - P[100, -1])/2, x] (* Jean-François Alcover, May 24 2021, from PARI code *)
  • PARI
    P(n,c)={c*sum(k=1, n\2, x^(2*k)/(1-c*x^(2*k)) + O(x*x^n))/prod(k=1, n\2, 1-c*x^(2*k-1) + O(x*x^n))}
    seq(n)={Vec(P(n,1) - P(n,-1), -(n+1))/2}

Formula

G.f.: (P(x,1) - P(x,-1))/2 where P(x,c) = (Sum_{k>=1} c*x^(2*k)/(1-c*x^(2*k))) / (Product_{k>=1} 1-c*x^(2*k-1)).
a(n) = A090867(n) - A341494(n).

A341496 Number of partitions of n with exactly one repeated part and that part is even.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 4, 5, 6, 9, 12, 16, 20, 26, 34, 43, 53, 67, 82, 101, 124, 151, 184, 222, 267, 320, 381, 454, 539, 637, 752, 884, 1038, 1214, 1417, 1651, 1920, 2227, 2578, 2979, 3437, 3957, 4547, 5218, 5980, 6840, 7815, 8914, 10154, 11552, 13122
Offset: 0

Views

Author

Andrew Howroyd, Feb 13 2021

Keywords

Examples

			The a(4) = 1 partition is: 2+2.
The a(5) = 1 partition is: 1+2+2.
The a(6) = 1 partition is: 2+2+2.
The a(7) = 2 partitions are: 2+2+3, 1+2+2+2.
The a(8) = 4 partitions are: 4+4, 2+2+4, 1+2+2+3, 2+2+2+2.
		

Crossrefs

Programs

  • PARI
    seq(n)={Vec(sum(k=1, n\4, x^(4*k)/(1 - x^(4*k)) + O(x*x^n)) * prod(k=1, n, 1 + x^k + O(x*x^n)), -(n+1))}

Formula

G.f.: (Sum_{k>=1} x^(4*k)/(1 - x^(4*k))) * Product_{k>=1} (1 + x^k).
a(n) = A090867(n) - A341497(n).
a(n) = A341497(n) - A116680(n).
a(n) = A341494(n) for even n; a(n) = A341495(n) for odd n.

A341497 Number of partitions of n with exactly one repeated part and that part is odd.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 9, 13, 17, 23, 30, 39, 49, 63, 78, 98, 122, 150, 184, 225, 272, 329, 397, 475, 567, 676, 802, 948, 1121, 1317, 1545, 1810, 2112, 2460, 2863, 3319, 3842, 4442, 5123, 5897, 6782, 7780, 8913, 10200, 11648, 13285, 15136, 17214, 19555, 22191, 25143
Offset: 0

Views

Author

Andrew Howroyd, Feb 13 2021

Keywords

Examples

			The a(2) = 1 partition is: 1+1.
The a(3) = 1 partition is: 1+1+1.
The a(4) = 2 partitions are: 1+1+2, 1+1+1+1.
The a(5) = 3 partitions are: 1+1+3, 1+1+1+2, 1+1+1+1+1.
		

Crossrefs

Programs

  • PARI
    seq(n)={Vec(sum(k=1, (n+2)\4, x^(4*k-2)/(1 - x^(4*k-2)) + O(x*x^n)) * prod(k=1, n, 1 + x^k + O(x*x^n)), -(n+1))}

Formula

G.f.: (Sum_{k>=1} x^(4*k-2)/(1 - x^(4*k-2))) * Product_{k>=1} (1 + x^k).
a(n) = A090867(n) - A341496(n).
a(n) = A116680(n) + A341496(n).
a(n) = A341495(n) for even n; a(n) = A341494(n) for odd n.
a(n) = (A067588(n) - A116676(n))/2. - Peter Bala, Jan 13 2025

A265251 Number of partitions of n such that there is exactly one part which occurs three times, while all other parts occur only once.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 2, 2, 4, 6, 6, 9, 10, 14, 19, 22, 26, 35, 40, 50, 63, 74, 88, 107, 127, 150, 181, 213, 249, 296, 345, 401, 473, 546, 636, 741, 853, 983, 1138, 1306, 1498, 1722, 1967, 2247, 2574, 2925, 3327, 3788, 4294, 4866, 5516, 6233, 7036, 7947, 8953
Offset: 0

Views

Author

Emeric Deutsch, Dec 28 2015

Keywords

Comments

Conjecture: a(n) is also the difference between the number of parts in the distinct partitions of n and the number of distinct parts in the odd partitions of n (offset 0). For example, if n = 5, there are 5 parts in the distinct partitions of 5 (5, 41, 32) and 4 distinct parts in the odd partitions of 5 (namely, 5,3,1,1 in 5,311,11111) with difference 1. - George Beck, Apr 22 2017
George E. Andrews has kindly informed me that he has proved this conjecture and the result will be included in his article "Euler's Partition Identity and Two Problems of George Beck" which will appear in The Mathematics Student, 86, Nos. 1-2, January - June (2017). - George Beck, Apr 23 2017

Examples

			a(9) = 4 because we have [2,2,2,3], [3,3,3], [1,1,1,2,4], and [1,1,1,6].
		

Crossrefs

Column k=3 of A266477.

Programs

  • Maple
    g := add(x^(3*k)/(1+x^k), k = 1 .. 100)*mul(1+x^i, i = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, m), m = 0 .. 75);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+5-4*t)/2, 0,
         `if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
         `if`(t=1 or 3*i>n, 0, b(n-3*i, i-1, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 5 - 4*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t] + If[t == 1 || 3*i > n, 0, b[n - 3*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 11 2016, after Alois P. Heinz *)
    Take[ CoefficientList[ Expand[ Sum[x^(3k)/(1 + x^k), {k, 60}] Product[1 + x^i, {i, 60}]], x], 60] (* slower than above *) (* Robert G. Wilson v, Apr 24 2017 *)
  • PARI
    x='x + O('x^54); concat([0, 0, 0],Vec(sum(k=1, 54, x^(3*k)/(1 + x^k)* prod(i=1, 54, 1 + x^i)))) \\ Indranil Ghosh, Apr 24 2017

Formula

G.f.: Sum_{k>=1} x^{3k}/(1+x^k)*Product_{i>=1} (1+x^i).
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(1/4), where c = 3^(1/4) * (2*log(2) - 1) / (4*Pi) = 0.040456547528... - Vaclav Kotesovec, May 24 2018

A305104 G.f.: Sum_{k>=1} x^(2*k)/(1-x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 0, 1, 2, 6, 12, 24, 44, 79, 134, 222, 358, 566, 876, 1334, 2000, 2960, 4326, 6253, 8946, 12680, 17816, 24832, 34352, 47192, 64404, 87354, 117796, 157976, 210764, 279812, 369744, 486413, 637188, 831324, 1080420, 1398968, 1805012, 2320992, 2974728, 3800618
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution A066898 of and A000009.
Convolution A090867 of and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k)/(1-x^(2*k)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (2*gamma + log(n/Pi^2)) * exp(Pi*sqrt(n)) / (16*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.
Showing 1-10 of 11 results. Next