cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265253 Triangle read by rows: T(n,k) is the number of partitions of n having k even singletons (n,k>=0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 4, 1, 8, 6, 1, 11, 9, 2, 15, 12, 3, 19, 18, 5, 25, 24, 7, 34, 32, 10, 1, 43, 43, 14, 1, 54, 59, 20, 2, 70, 76, 27, 3, 89, 99, 38, 5, 111, 129, 50, 7, 140, 165, 69, 11, 174, 211, 90, 15, 216, 270, 119, 21, 1, 268, 339, 155, 29, 1, 328, 429, 203, 40, 2
Offset: 0

Views

Author

Emeric Deutsch, Dec 31 2015

Keywords

Comments

T(n,0) = A265254(n).
Sum(k*T(n,k), k>=0) = A024788(n+2).

Examples

			T(6,1) = 4 because each of the partitions [1,1,1,1,2], [1,2,3], [1,1,4], [6] of n = 6 has 1 even singleton, while the other partitions, namely [1,1,1,1,1,1], [1,1,2,2], [2,2,2], [1,1,1,3], [3,3], [2,4], [1,5], have 0, 0, 0 ,0, 0, 2, 0 even singletons.
Triangle starts:
  1;
  1;
  1, 1;
  2, 1;
  3, 2;
  4, 3;
  6, 4, 1.
		

Crossrefs

Programs

  • Maple
    g := mul(((1-x^(2*j))*(1+t*x^(2*j))+x^(4*j))/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, q), q = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
          `if`(j=1 and i::even, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Jan 01 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && EvenQ[i], x, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[ T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product_{j>=1}((1-x^{2j})(1+tx^{2j}) + x^{4j})/(1-x^j).