cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A265254 Number of partitions of n having no even singletons.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 19, 25, 34, 43, 54, 70, 89, 111, 140, 174, 216, 268, 328, 402, 495, 601, 727, 883, 1066, 1281, 1540, 1843, 2202, 2627, 3120, 3702, 4392, 5187, 6114, 7206, 8471, 9936, 11644, 13617, 15902, 18548, 21588, 25098, 29156, 33799, 39129
Offset: 0

Views

Author

Emeric Deutsch, Dec 31 2015

Keywords

Examples

			a(5) = 4 because the partitions [1,1,1,1,1], [1,2,2], [1,1,3], [5] have no even singletons while [1,1,1,2], [2,3], [1,4] do have.
		

Crossrefs

Cf. A265253.

Programs

  • Maple
    g := mul((1-x^(2*j)+x^(4*j))/(1-x^j), j = 1 .. 80): gser := series(g, x = 0,65): seq(coeff(gser, x, n), n = 0 .. 60);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=1 and i::even, 0, b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 02 2016
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k) + x^(4*k)) / (1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(6*k)) / (1 - x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)

Formula

G.f.: g(x) = Product_{j>=1} (1 - x^(2j) + x^(4j))/(1-x^j).
a(n) = A265253(n,0).
G.f.: Product_{k>=1} (1 + x^k) * (1 + x^(6*k)) / (1 - x^(4*k)). - Vaclav Kotesovec, Jan 01 2016
a(n) ~ sqrt(5) * exp(sqrt(5*n)*Pi/3) / (3*2^(5/2)*n). - Vaclav Kotesovec, Jan 01 2016

A265255 Triangle read by rows: T(n,k) is the number of partitions of n having k odd singletons (n, k >=0).

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 4, 0, 1, 2, 5, 8, 1, 2, 4, 11, 14, 3, 5, 9, 20, 0, 1, 24, 8, 10, 16, 37, 1, 2, 41, 15, 21, 28, 65, 3, 5, 66, 30, 39, 49, 108, 9, 10, 104, 57, 69, 0, 1, 80, 178, 19, 20, 163, 99, 120, 1, 2, 128, 286, 39, 37, 248, 170, 201, 3, 5, 203, 448, 73, 68, 372, 284, 327
Offset: 0

Views

Author

Emeric Deutsch, Jan 01 2016

Keywords

Comments

Sum of entries in row n is A000041(n).
T(n,0) = A265256(n).
Sum_{k>=0} k*T(n,k) = A265257(n).

Examples

			T(6,2) = 2 because each of the partitions [1,2,3], [1,5] of n = 6 has 2 odd singleton, while the other partitions, namely [1,1,1,1,1,1], [1,1,1,1,2], [1,1,2,2], [2,2,2], [1,1,1,3], [3,3], [1,1,4], [2,4], [6], have 0, 0, 0, 0, 1, 0, 0, 0, 0  odd singletons.
Triangle starts:
1;
0, 1;
2;
1, 2;
4, 0, 1;
2, 5;
8, 1, 2.
		

Crossrefs

Programs

  • Maple
    g := mul(((1-x^(2*j-1))*(1+t*x^(2*j-1))+x^(4*j-2))/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, q), q = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
          `if`(j=1 and i::odd, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Jan 01 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && OddQ[i], x, 1], {j, 0, n/i}]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 10 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product_{j>=1} ((1 -x^(2j-1))(1+tx^{2j-1}) + x^(4j-2))/ (1-x^j).

A265245 Triangle read by rows: T(n,k) is the number of partitions of n for which the sum of the squares of the parts is k (n>=0, k>=0).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 06 2015

Keywords

Comments

Number of entries in row n = 1 + n^2.
Sum of entries in row n = A000041(n).
Sum(k*T(n,k), k>=0) = A066183(n).

Examples

			Row 3 is 0,0,0,1,0,1,0,0,0,1 because in the partitions of 3, namely [1,1,1], [2,1], [3], the sums of the squares of the parts are 3, 5, and 9, respectively.
Triangle starts:
1;
0,1;
0,0,1,0,1;
0,0,0,1,0,1,0,0,0,1;
0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,1.
		

Crossrefs

Programs

  • Maple
    g := 1/(product(1-t^(k^2)*x^k, k = 1 .. 100)): gser := simplify(series(g, x = 0, 15)): for n from 0 to 8 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 8 do seq(coeff(P[n], t, j), j = 0 .. n^2) end do; # yields sequence in triangular form
  • Mathematica
    m = 8; CoefficientList[#, t]& /@ CoefficientList[1/Product[(1 - t^(k^2)* x^k), {k, 1, m}] + O[x]^m, x] // Flatten (* Jean-François Alcover, Feb 19 2019 *)

Formula

G.f.: G(t,x) = 1/Product_{k>=1} (1 - t^{k^2}*x^k).
Showing 1-3 of 3 results.