cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A265253 Triangle read by rows: T(n,k) is the number of partitions of n having k even singletons (n,k>=0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 4, 1, 8, 6, 1, 11, 9, 2, 15, 12, 3, 19, 18, 5, 25, 24, 7, 34, 32, 10, 1, 43, 43, 14, 1, 54, 59, 20, 2, 70, 76, 27, 3, 89, 99, 38, 5, 111, 129, 50, 7, 140, 165, 69, 11, 174, 211, 90, 15, 216, 270, 119, 21, 1, 268, 339, 155, 29, 1, 328, 429, 203, 40, 2
Offset: 0

Views

Author

Emeric Deutsch, Dec 31 2015

Keywords

Comments

T(n,0) = A265254(n).
Sum(k*T(n,k), k>=0) = A024788(n+2).

Examples

			T(6,1) = 4 because each of the partitions [1,1,1,1,2], [1,2,3], [1,1,4], [6] of n = 6 has 1 even singleton, while the other partitions, namely [1,1,1,1,1,1], [1,1,2,2], [2,2,2], [1,1,1,3], [3,3], [2,4], [1,5], have 0, 0, 0 ,0, 0, 2, 0 even singletons.
Triangle starts:
  1;
  1;
  1, 1;
  2, 1;
  3, 2;
  4, 3;
  6, 4, 1.
		

Crossrefs

Programs

  • Maple
    g := mul(((1-x^(2*j))*(1+t*x^(2*j))+x^(4*j))/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, q), q = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
          `if`(j=1 and i::even, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Jan 01 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && EvenQ[i], x, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[ T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product_{j>=1}((1-x^{2j})(1+tx^{2j}) + x^{4j})/(1-x^j).

A276424 Triangle read by rows: T(n,k) is the number of partitions of n for which the sum of its even singletons is k (0<=k<=n). A singleton in a partition is a part that occurs exactly once.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 0, 1, 4, 0, 2, 0, 1, 0, 6, 0, 2, 0, 1, 0, 2, 8, 0, 3, 0, 2, 0, 2, 0, 11, 0, 4, 0, 3, 0, 2, 0, 2, 15, 0, 5, 0, 4, 0, 4, 0, 2, 0, 19, 0, 7, 0, 6, 0, 5, 0, 2, 0, 3, 25, 0, 9, 0, 8, 0, 7, 0, 4, 0, 3, 0, 34, 0, 11, 0, 10, 0, 10, 0, 5, 0, 3, 0, 4
Offset: 0

Views

Author

Emeric Deutsch, Sep 14 2016

Keywords

Comments

T(n,0) = A265254(n).
T(n,n) = A035457(n).
Sum_{k>=0} k*T(n,k) = A276425(n).
Sum_{k>=0} T(n,k) = A000041(n).

Examples

			Row 4 is 3, 0, 1, 0, 1 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the even singletons are 0, 2, 0, 0, 4, respectively.
Row 5 is 4, 0, 2, 0, 1, 0 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the even singletons are 0, 2, 0, 0, 2, 4, 0, respectively.
Triangle starts:
  1;
  1,0;
  1,0,1;
  2,0,1,0;
  3,0,1,0,1;
  4,0,2,0,1,0;
  6,0,2,0,1,0,2.
		

Crossrefs

Programs

  • Maple
    g := Product(((1-x^(2*j))*(1+t^(2*j)*x^(2*j))+x^(4*j))/(1-x^j), j = 1 .. 100): gser := simplify(series(g, x = 0, 23)): for n from 0 to 20 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, i), i = 0 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
          `if`(j=1 and i::even, x^i, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Sep 14 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && EvenQ[i], x^i, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 11 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product_{j>=1} ((1-x^(2*j))*(1+t^(2*j)*x^(2*j)) + x^(4*j))/(1-x^j).

A265256 Number of partitions of n having no odd singletons (n>=0).

Original entry on oeis.org

1, 0, 2, 1, 4, 2, 8, 4, 14, 9, 24, 16, 41, 28, 66, 49, 104, 80, 163, 128, 248, 203, 372, 312, 554, 472, 810, 708, 1172, 1042, 1684, 1516, 2390, 2188, 3364, 3118, 4705, 4404, 6522, 6177, 8980, 8584, 12295, 11844, 16718, 16244, 22604, 22120, 30413, 29944, 40692
Offset: 0

Views

Author

Emeric Deutsch, Jan 01 2016

Keywords

Examples

			a(5) = 2 because  among the 7 partitions of 5 only [1,1,1,1,1] and [1,1,1,2] have no odd singletons (the others are: [1,2,2], [1,1,3], [2,3], [1,4], [5]).
		

Crossrefs

Programs

  • Maple
    g := mul((1-x^(2*j-1)+x^(4*j-2))/(1-x^j), j = 1 .. 80): gser := series(g, x = 0, 60): seq(coeff(gser, x, n), n = 0 .. 55);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=1 and i::odd, 0, b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 02 2016
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1 - x^(2*k-1) + x^(4*k-2))) / (1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(6*k-3)) / ((1 + x^(2*k-1)) * (1-x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)

Formula

a(n) = A265255(n,0).
G.f.: g(x) = Product_{j>=1} (1 - x^(2j-1) + x^(4j-2)) / (1-x^j).
a(n) ~ sqrt(5) * exp(sqrt(5*n)*Pi/3) / (12*sqrt(2)*n). - Vaclav Kotesovec, Jan 01 2016
Showing 1-3 of 3 results.