cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265254 Number of partitions of n having no even singletons.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 19, 25, 34, 43, 54, 70, 89, 111, 140, 174, 216, 268, 328, 402, 495, 601, 727, 883, 1066, 1281, 1540, 1843, 2202, 2627, 3120, 3702, 4392, 5187, 6114, 7206, 8471, 9936, 11644, 13617, 15902, 18548, 21588, 25098, 29156, 33799, 39129
Offset: 0

Views

Author

Emeric Deutsch, Dec 31 2015

Keywords

Examples

			a(5) = 4 because the partitions [1,1,1,1,1], [1,2,2], [1,1,3], [5] have no even singletons while [1,1,1,2], [2,3], [1,4] do have.
		

Crossrefs

Cf. A265253.

Programs

  • Maple
    g := mul((1-x^(2*j)+x^(4*j))/(1-x^j), j = 1 .. 80): gser := series(g, x = 0,65): seq(coeff(gser, x, n), n = 0 .. 60);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=1 and i::even, 0, b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 02 2016
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k) + x^(4*k)) / (1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(6*k)) / (1 - x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)

Formula

G.f.: g(x) = Product_{j>=1} (1 - x^(2j) + x^(4j))/(1-x^j).
a(n) = A265253(n,0).
G.f.: Product_{k>=1} (1 + x^k) * (1 + x^(6*k)) / (1 - x^(4*k)). - Vaclav Kotesovec, Jan 01 2016
a(n) ~ sqrt(5) * exp(sqrt(5*n)*Pi/3) / (3*2^(5/2)*n). - Vaclav Kotesovec, Jan 01 2016