cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265256 Number of partitions of n having no odd singletons (n>=0).

Original entry on oeis.org

1, 0, 2, 1, 4, 2, 8, 4, 14, 9, 24, 16, 41, 28, 66, 49, 104, 80, 163, 128, 248, 203, 372, 312, 554, 472, 810, 708, 1172, 1042, 1684, 1516, 2390, 2188, 3364, 3118, 4705, 4404, 6522, 6177, 8980, 8584, 12295, 11844, 16718, 16244, 22604, 22120, 30413, 29944, 40692
Offset: 0

Views

Author

Emeric Deutsch, Jan 01 2016

Keywords

Examples

			a(5) = 2 because  among the 7 partitions of 5 only [1,1,1,1,1] and [1,1,1,2] have no odd singletons (the others are: [1,2,2], [1,1,3], [2,3], [1,4], [5]).
		

Crossrefs

Programs

  • Maple
    g := mul((1-x^(2*j-1)+x^(4*j-2))/(1-x^j), j = 1 .. 80): gser := series(g, x = 0, 60): seq(coeff(gser, x, n), n = 0 .. 55);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=1 and i::odd, 0, b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 02 2016
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1 - x^(2*k-1) + x^(4*k-2))) / (1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(6*k-3)) / ((1 + x^(2*k-1)) * (1-x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)

Formula

a(n) = A265255(n,0).
G.f.: g(x) = Product_{j>=1} (1 - x^(2j-1) + x^(4j-2)) / (1-x^j).
a(n) ~ sqrt(5) * exp(sqrt(5*n)*Pi/3) / (12*sqrt(2)*n). - Vaclav Kotesovec, Jan 01 2016