cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265257 Number of odd singletons in all partitions of n (n>=0).

Original entry on oeis.org

0, 1, 0, 2, 2, 5, 5, 11, 13, 23, 28, 45, 57, 86, 108, 156, 199, 276, 350, 475, 601, 798, 1005, 1312, 1646, 2120, 2643, 3365, 4178, 5264, 6500, 8122, 9981, 12375, 15136, 18638, 22697, 27779, 33679, 40993, 49504, 59947, 72109
Offset: 0

Views

Author

Emeric Deutsch, Jan 01 2016

Keywords

Examples

			a(6) = 5 because in [1,1,1,3], [1,2,3], [1,5] we have 1+2+2 odd singletons, while the other 8 partitions of 6 have no odd singletons.
		

Crossrefs

Cf. A265255.

Programs

  • Maple
    g := x*(1-x+x^2)/((1-x^4)*mul(1-x^j, j = 1 .. 80)): gser := series(g, x = 0, 55): seq(coeff(gser, x, m), m = 0 .. 50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, 0, add((p-> `if`(j=1 and i::odd, p+
          [0, p[1]], p))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..80);  # Alois P. Heinz, Jan 01 2016
  • Mathematica
    nmax = 50; CoefficientList[Series[x*(1-x+x^2)/(1-x^4) * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 01 2016 *)

Formula

a(n) = Sum(k*A265255(n,k), k>=0).
G.f.: g(x) = x(1 - x + x^2)/((1-x^4)*Product_{j>=1}(1-x^j)).
From Vaclav Kotesovec, Jan 01 2016: (Start)
a(n) = 1/4 * A000070(n) - 3/4 * A087787(n) + 1/2 * A092295(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*Pi*sqrt(2*n)).
(End)