A276423 Sum of the odd singletons in all partitions of n (n>=0). A singleton in a partition is a part that occurs exactly once.
0, 1, 0, 4, 4, 13, 13, 33, 41, 79, 98, 171, 223, 354, 458, 692, 905, 1306, 1694, 2375, 3077, 4202, 5401, 7238, 9260, 12200, 15495, 20145, 25446, 32686, 41020, 52170, 65117, 82071, 101852, 127374, 157277, 195289, 239915, 296023, 362000, 444063, 540595, 659662
Offset: 0
Keywords
Examples
a(4) = 4 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the odd singletons are 0,0,0,4,0, respectively; their sum is 4. a(5) = 13 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the odd singletons are 0,0,1,3,3,1,5, respectively; their sum is 13.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Programs
-
Maple
g := x*(1-x+3*x^2+3*x^4-x^5+x^6)/((1-x^4)^2*(product(1-x^i, i = 1..120))): gser := series(g, x = 0, 60); seq(coeff(gser, x, n), n = 0..50); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add((p-> p+`if`(i::odd and j=1, [0, i*p[1]], 0))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..50); # Alois P. Heinz, Sep 14 2016
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, 0, Sum[Function[p, p + If[OddQ[i] && j == 1, {0, If[p === 0, 0, i*p[[1]]]}, 0]][b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 04 2016 after Alois P. Heinz *) Table[Total[Select[Flatten[Tally/@IntegerPartitions[n],1],#[[2]]==1 && OddQ[ #[[1]]]&][[All,1]]],{n,0,50}] (* Harvey P. Dale, May 25 2018 *)
Formula
G.f.: g(x) = x*(1-x+3*x^2+3*x^4-x^5+x^6)/((1-x^4)^2*Product_{j>=1} 1-x^j).
a(n) = Sum_{k>=0} k*A276422(n,k).
a(n) ~ 3^(3/2) * exp(Pi*sqrt(2*n/3)) / (16*Pi^2). - Vaclav Kotesovec, Jun 12 2025
Comments