cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276423 Sum of the odd singletons in all partitions of n (n>=0). A singleton in a partition is a part that occurs exactly once.

Original entry on oeis.org

0, 1, 0, 4, 4, 13, 13, 33, 41, 79, 98, 171, 223, 354, 458, 692, 905, 1306, 1694, 2375, 3077, 4202, 5401, 7238, 9260, 12200, 15495, 20145, 25446, 32686, 41020, 52170, 65117, 82071, 101852, 127374, 157277, 195289, 239915, 296023, 362000, 444063, 540595, 659662
Offset: 0

Views

Author

Emeric Deutsch, Sep 14 2016

Keywords

Examples

			a(4) = 4 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the odd singletons are 0,0,0,4,0, respectively; their sum is 4.
a(5) = 13 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the odd singletons are 0,0,1,3,3,1,5, respectively; their sum is 13.
		

Crossrefs

Programs

  • Maple
    g := x*(1-x+3*x^2+3*x^4-x^5+x^6)/((1-x^4)^2*(product(1-x^i, i = 1..120))): gser := series(g, x = 0, 60); seq(coeff(gser, x, n), n = 0..50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, 0, add((p-> p+`if`(i::odd and j=1,
          [0, i*p[1]], 0))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..50); # Alois P. Heinz, Sep 14 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, 0, Sum[Function[p, p + If[OddQ[i] && j == 1, {0, If[p === 0, 0, i*p[[1]]]}, 0]][b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 04 2016 after Alois P. Heinz *)
    Table[Total[Select[Flatten[Tally/@IntegerPartitions[n],1],#[[2]]==1 && OddQ[ #[[1]]]&][[All,1]]],{n,0,50}] (* Harvey P. Dale, May 25 2018 *)

Formula

G.f.: g(x) = x*(1-x+3*x^2+3*x^4-x^5+x^6)/((1-x^4)^2*Product_{j>=1} 1-x^j).
a(n) = Sum_{k>=0} k*A276422(n,k).
a(n) ~ 3^(3/2) * exp(Pi*sqrt(2*n/3)) / (16*Pi^2). - Vaclav Kotesovec, Jun 12 2025

A265255 Triangle read by rows: T(n,k) is the number of partitions of n having k odd singletons (n, k >=0).

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 4, 0, 1, 2, 5, 8, 1, 2, 4, 11, 14, 3, 5, 9, 20, 0, 1, 24, 8, 10, 16, 37, 1, 2, 41, 15, 21, 28, 65, 3, 5, 66, 30, 39, 49, 108, 9, 10, 104, 57, 69, 0, 1, 80, 178, 19, 20, 163, 99, 120, 1, 2, 128, 286, 39, 37, 248, 170, 201, 3, 5, 203, 448, 73, 68, 372, 284, 327
Offset: 0

Views

Author

Emeric Deutsch, Jan 01 2016

Keywords

Comments

Sum of entries in row n is A000041(n).
T(n,0) = A265256(n).
Sum_{k>=0} k*T(n,k) = A265257(n).

Examples

			T(6,2) = 2 because each of the partitions [1,2,3], [1,5] of n = 6 has 2 odd singleton, while the other partitions, namely [1,1,1,1,1,1], [1,1,1,1,2], [1,1,2,2], [2,2,2], [1,1,1,3], [3,3], [1,1,4], [2,4], [6], have 0, 0, 0, 0, 1, 0, 0, 0, 0  odd singletons.
Triangle starts:
1;
0, 1;
2;
1, 2;
4, 0, 1;
2, 5;
8, 1, 2.
		

Crossrefs

Programs

  • Maple
    g := mul(((1-x^(2*j-1))*(1+t*x^(2*j-1))+x^(4*j-2))/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, q), q = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
          `if`(j=1 and i::odd, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Jan 01 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && OddQ[i], x, 1], {j, 0, n/i}]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 10 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product_{j>=1} ((1 -x^(2j-1))(1+tx^{2j-1}) + x^(4j-2))/ (1-x^j).
Showing 1-2 of 2 results.