A265260 Number of partitions of n into even squares.
1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 8, 0, 0, 0, 9, 0, 0, 0, 10, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 13, 0, 0, 0, 14, 0, 0, 0, 14, 0, 0, 0, 16, 0, 0, 0, 19, 0, 0, 0, 20, 0
Offset: 0
Keywords
Examples
a(28) = 2 because we have [4,4,4,4,4,4,4] and [4,4,4,16]. a(32) = 3 because we have [4,4,4,4,4,4,4,4], [4,4,4,4,16], and [16,16].
Links
- Hans Havermann, Table of n, a(n) for n = 0..831
Programs
-
Maple
g := 1/mul(1-x^(4*i^2), i = 1 .. 150): gser := series(g, x = 0, 105): seq(coeff(gser, x, n), n = 0 .. 100); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i)))) end: a:= n-> `if`(irem(n, 4, 'm')=0, b(m, isqrt(m)), 0): seq(a(n), n=0..120); # Alois P. Heinz, Jan 27 2016
-
Mathematica
a[n_] := If[n==0, 1, If[Divisible[n, 4], PowersRepresentations[n/4, n/4, 2] // Length, 0]]; Array[a, 100, 0] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
Formula
G.f.: 1/Product_{i>=1} (1 - x^{4i^2}).
a(4n) = A001156(n). - Alois P. Heinz, Jan 27 2016
Extensions
Data-section extended up to a(105) by Antti Karttunen, Nov 21 2017, from the b-file provided by Hans Havermann
Comments