cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265260 Number of partitions of n into even squares.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 6, 0, 0, 0, 8, 0, 0, 0, 9, 0, 0, 0, 10, 0, 0, 0, 10, 0, 0, 0, 12, 0, 0, 0, 13, 0, 0, 0, 14, 0, 0, 0, 14, 0, 0, 0, 16, 0, 0, 0, 19, 0, 0, 0, 20, 0
Offset: 0

Views

Author

Emeric Deutsch, Jan 26 2016

Keywords

Comments

a(n) = 0 if and only if n is not divisible by 4 (sequence A042968).

Examples

			a(28) = 2 because we have [4,4,4,4,4,4,4] and [4,4,4,16].
a(32) = 3 because we have [4,4,4,4,4,4,4,4], [4,4,4,4,16], and [16,16].
		

Crossrefs

Programs

  • Maple
    g := 1/mul(1-x^(4*i^2), i = 1 .. 150): gser := series(g, x = 0, 105): seq(coeff(gser, x, n), n = 0 .. 100);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i))))
        end:
    a:= n-> `if`(irem(n, 4, 'm')=0, b(m, isqrt(m)), 0):
    seq(a(n), n=0..120);  # Alois P. Heinz, Jan 27 2016
  • Mathematica
    a[n_] := If[n==0, 1, If[Divisible[n, 4], PowersRepresentations[n/4, n/4, 2] // Length, 0]]; Array[a, 100, 0] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)

Formula

G.f.: 1/Product_{i>=1} (1 - x^{4i^2}).
a(4n) = A001156(n). - Alois P. Heinz, Jan 27 2016

Extensions

Data-section extended up to a(105) by Antti Karttunen, Nov 21 2017, from the b-file provided by Hans Havermann