cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265312 Square array read by ascending antidiagonals, Bell numbers iterated by the Bell transform.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 5, 1, 1, 1, 2, 6, 15, 1, 1, 1, 2, 6, 23, 52, 1, 1, 1, 2, 6, 24, 106, 203, 1, 1, 1, 2, 6, 24, 119, 568, 877, 1, 1, 1, 2, 6, 24, 120, 700, 3459, 4140, 1, 1, 1, 2, 6, 24, 120, 719, 4748, 23544, 21147, 1, 1, 1, 2, 6, 24, 120, 720, 5013, 36403, 176850, 115975, 1
Offset: 0

Views

Author

Peter Luschny, Dec 06 2015

Keywords

Examples

			[1, 1, 1, 1,  1,   1,   1,    1,     1, ...] A000012
[1, 1, 2, 5, 15,  52, 203,  877,  4140, ...] A000110
[1, 1, 2, 6, 23, 106, 568, 3459, 23544, ...] A187761
[1, 1, 2, 6, 24, 119, 700, 4748, 36403, ...] A264432
[1, 1, 2, 6, 24, 120, 719, 5013, 39812, ...]
[1, 1, 2, 6, 24, 120, 720, 5039, 40285, ...]
[...                                    ...]
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...] A000142 = main diagonal.
		

Crossrefs

Programs

  • Maple
    A:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
          binomial(n-1, j-1)*A(j-1, h-1)*A(n-j, h), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 21 2017
  • Mathematica
    A[n_, h_]:=A[n, h]=If[Min[n, h]==0, 1, Sum[Binomial[n - 1, j - 1] A[j - 1, h - 1] A[n - j, h] , {j, n}]]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}]//Flatten (* Indranil Ghosh, Aug 21 2017, after maple code *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*A(j - 1, h - 1)*A(n - j, h) for j in range(1, n + 1)])
    for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # Indranil Ghosh, Aug 21 2017, after Maple code
  • Sage
    # uses[bell_transform from A264428]
    def bell_number_matrix(ord, len):
        b = [1]*len; L = [b]
        for k in (1..ord-1):
            b = [sum(bell_transform(n, b)) for n in range(len)]
            L.append(b)
        return matrix(ZZ, L)
    print(bell_number_matrix(6, 9))