A265312 Square array read by ascending antidiagonals, Bell numbers iterated by the Bell transform.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 5, 1, 1, 1, 2, 6, 15, 1, 1, 1, 2, 6, 23, 52, 1, 1, 1, 2, 6, 24, 106, 203, 1, 1, 1, 2, 6, 24, 119, 568, 877, 1, 1, 1, 2, 6, 24, 120, 700, 3459, 4140, 1, 1, 1, 2, 6, 24, 120, 719, 4748, 23544, 21147, 1, 1, 1, 2, 6, 24, 120, 720, 5013, 36403, 176850, 115975, 1
Offset: 0
Examples
[1, 1, 1, 1, 1, 1, 1, 1, 1, ...] A000012 [1, 1, 2, 5, 15, 52, 203, 877, 4140, ...] A000110 [1, 1, 2, 6, 23, 106, 568, 3459, 23544, ...] A187761 [1, 1, 2, 6, 24, 119, 700, 4748, 36403, ...] A264432 [1, 1, 2, 6, 24, 120, 719, 5013, 39812, ...] [1, 1, 2, 6, 24, 120, 720, 5039, 40285, ...] [... ...] [1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...] A000142 = main diagonal.
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Peter Luschny, The Bell transform
Programs
-
Maple
A:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add( binomial(n-1, j-1)*A(j-1, h-1)*A(n-j, h), j=1..n)) end: seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 21 2017
-
Mathematica
A[n_, h_]:=A[n, h]=If[Min[n, h]==0, 1, Sum[Binomial[n - 1, j - 1] A[j - 1, h - 1] A[n - j, h] , {j, n}]]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}]//Flatten (* Indranil Ghosh, Aug 21 2017, after maple code *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial @cacheit def A(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*A(j - 1, h - 1)*A(n - j, h) for j in range(1, n + 1)]) for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # Indranil Ghosh, Aug 21 2017, after Maple code
-
Sage
# uses[bell_transform from A264428] def bell_number_matrix(ord, len): b = [1]*len; L = [b] for k in (1..ord-1): b = [sum(bell_transform(n, b)) for n in range(len)] L.append(b) return matrix(ZZ, L) print(bell_number_matrix(6, 9))