cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A265345 Square array A(row,col): For row=0, A(0,col) = A265341(col), for row > 0, A(row,col) = A265342(A(row-1,col)).

Original entry on oeis.org

1, 3, 2, 7, 6, 4, 5, 10, 12, 8, 9, 22, 20, 24, 16, 21, 18, 28, 40, 48, 64, 13, 30, 36, 56, 80, 192, 32, 19, 26, 60, 72, 112, 160, 96, 184, 25, 14, 52, 120, 144, 224, 640, 552, 352, 11, 46, 76, 208, 240, 576, 448, 320, 1056, 704, 15, 58, 68, 136, 104, 480, 288, 1720, 1600, 2112, 1408
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array A(row,col) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
All the terms in the same column are either all divisible by 3, or none of them are.
Reducing A265342 to its constituent sequences gives A265342(n) = A263273(2*A263273(n)). Iterating this function k times starting from n reduces to (because A263273 is an involution, so pairs of them are canceled) to A263273((2^k)*A263273(n)).

Examples

			The top left corner of the array:
    1,    3,    7,    5,    9,   21,   13,   19,   25,   11,   15,    39, .
    2,    6,   10,   22,   18,   30,   26,   14,   46,   58,   66,    78, .
    4,   12,   20,   28,   36,   60,   52,   76,   68,   44,   84,   156, .
    8,   24,   40,   56,   72,  120,  208,  136,   88,  232,  168,   624, .
   16,   48,   80,  112,  144,  240,  104,  200,  496,  424,  336,   312, .
   64,  192,  160,  224,  576,  480,  520,  256,  344,  608,  672,  1560, .
   32,   96,  640,  448,  288, 1920, 1144,  512, 1984,  736, 1344,  3432, .
  184,  552,  320, 1720, 1656,  960, 2072, 1024, 1376, 4384, 5160,  6216, .
  352, 1056, 1600,  824, 3168, 4800, 3712, 6040, 5344, 2936, 2472, 11136, .
  ...
		

Crossrefs

Inverse: A265346.
Transpose: A265347.
Leftmost column: A264980.
Topmost row: A265341.
Row index: A265330 (zero-based), A265331 (one-based).
Column index: A265910 (zero-based), A265911 (one-based).
Cf. also A265342.
Related permutations: A263273, A265895.

Programs

Formula

For row=0, A(0,col) = A265341(col), for row>0, A(row,col) = A265342(A(row-1,col)).
A(row, col) = A263273((2^row) * A263273(A265341(col))). [The above reduces to this.]

A265351 Permutation of nonnegative integers: a(n) = A263272(A263273(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 29, 12, 13, 38, 33, 32, 35, 18, 7, 20, 15, 14, 17, 24, 23, 26, 27, 28, 83, 30, 31, 92, 87, 86, 89, 36, 37, 110, 39, 40, 119, 114, 113, 116, 99, 34, 101, 96, 95, 98, 105, 104, 107, 54, 19, 56, 21, 22, 65, 60, 59, 62, 45, 16, 47, 42, 41, 44, 51, 50, 53, 72, 25, 74, 69, 68, 71, 78, 77, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a263272(n): return a263273(2*n)/2
    def a(n): return a263272(a263273(n)) # Indranil Ghosh, May 25 2017
  • Scheme
    (define (A265351 n) (A263272 (A263273 n)))
    

Formula

a(n) = A263272(A263273(n)).
As a composition of other related permutations:
a(n) = A264974(A265367(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
a(n) = A265342(n)/2.

A265341 Permutation of odd numbers: a(n) = 1 + (2*A265353(n)).

Original entry on oeis.org

1, 3, 7, 5, 9, 21, 13, 19, 25, 11, 15, 39, 17, 27, 63, 49, 57, 75, 31, 23, 67, 37, 55, 61, 43, 73, 79, 29, 33, 93, 47, 51, 147, 139, 111, 129, 35, 45, 117, 53, 81, 189, 157, 171, 225, 103, 69, 201, 145, 165, 183, 151, 219, 237, 85, 65, 193, 41, 71, 211, 121, 199, 205, 91, 59, 175, 109, 163, 169, 115, 181, 187, 97
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Crossrefs

Topmost row of A265345.
Cf. A265353.
Cf. also A265342, A263273.

Programs

Formula

a(n) = 1 + (2*A265353(n)).

A264980 Base-3 reversal of 2^n: a(n) = A030102(A000079(n)).

Original entry on oeis.org

1, 2, 4, 8, 16, 64, 32, 184, 352, 704, 1408, 1880, 2824, 14032, 10328, 56128, 100576, 145784, 189472, 370304, 731752, 4388248, 2924096, 11175712, 15965704, 31930448, 63861880, 383165344, 255439712, 1021772344, 510875648, 2550188248, 5619691648, 9689861048, 17830350904, 79068724264, 34109913224, 192259976368, 133338241880
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Examples

			2^5 = 32 in base 3 = "1012" (= A007089(32)) as 1*27 + 1*3 + 2*1 = 32. 2^6 = 64 in base 3 = "2101" as 2*27 + 1*9 + 1*1 = 64. "1012" reversed is "2101" and vice versa, thus a(5) = 64 and a(6) = 32.
		

Crossrefs

Leftmost column of A265345.
Cf. also A036215.

Programs

  • PARI
    base(n) = {my(a=[n%3]); while(0Altug Alkan, Dec 29 2015

Formula

a(n) = A030102(A000079(n)) = A263273(A000079(n)).
a(0) = 1, for n >= 1, a(n) = A265342(a(n-1)).
Showing 1-4 of 4 results.