cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356013 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) = n!/(k! * floor(n/k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 6, 4, 1, 24, 30, 20, 5, 1, 120, 120, 60, 30, 6, 1, 720, 840, 420, 210, 42, 7, 1, 5040, 5040, 3360, 840, 336, 56, 8, 1, 40320, 45360, 20160, 7560, 3024, 504, 72, 9, 1, 362880, 362880, 201600, 75600, 15120, 5040, 720, 90, 10, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2022

Keywords

Examples

			Triangle begins:
      1;
      1,     1;
      2,     3,     1;
      6,     6,     4,    1;
     24,    30,    20,    5,    1;
    120,   120,    60,   30,    6,   1;
    720,   840,   420,  210,   42,   7,  1;
   5040,  5040,  3360,  840,  336,  56,  8, 1;
  40320, 45360, 20160, 7560, 3024, 504, 72, 9, 1;
  ...
		

Crossrefs

Row sums gives A356011.
Column k=1..3 give A000142(n-1), |A265376(n)|, A356012.
Cf. A355996.

Programs

  • PARI
    T(n, k) = n!/(k!*(n\k));

Formula

E.g.f. of column k: -(1 - x^k) * log(1 - x^k)/(k! * (1 - x)).

A352526 a(n) = Product_{k=0..n} Nimsum (2*k + 2), with Nimsum (2 + 2) = 0 replaced by 1.

Original entry on oeis.org

2, 2, 12, 48, 480, 3840, 53760, 645120, 11612160, 185794560, 4087480320, 81749606400, 2125489766400, 51011754393600, 1530352631808000, 42849873690624000, 1456895705481216000, 46620662575398912000, 1771585177865158656000, 63777066403145711616000, 2678636788932119887872000
Offset: 0

Views

Author

Peter McNair, Mar 19 2022

Keywords

Comments

Nimsum 2*k + 2 = A004443(2*k).
Sum_{n>0} 1/a(n) = 1/sqrt(e) = A092605.
Sum_{n>0} 1/a(2*n-1) = sinh(1/2) = A334367.
Sum_{n>0} 1/a(2*n) = cosh(1/2) - 2*sinh(1/2).
a(n)/2^n = abs(A265376(n+1)) = Product_{k=0..n} Nimsum k + 1, with Nimsum 1 + 1 = 0 replaced by 1, n > 0.

Crossrefs

Programs

  • Mathematica
    a[n_] := Product[If[k == 1, 1, BitXor[2*k, 2]], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Mar 19 2022 *)
  • PARI
    a(n) = 2*prod(k=2,n,bitxor(2*k, 2))

Formula

a(n) = 2*Product_{k=2..n} A004443(2*k).
a(n) = 2^(n-1)*(n+1)!/floor((n+1)/2), n > 0.
a(n) = 2^(n-1)*(1+(-1)^n)*((n-1)!+n!)-((-1)^n-1)*(2*n)!!/2, n > 0.
a(n) = 2*a(n-1)*(n+(-1)^n), n > 1, with a(1) = 2.
Showing 1-2 of 2 results.