cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A265396 Numerator of A265395(n)/A265394(n), record values / record positions in A265388.

Original entry on oeis.org

0, 3, 5, 11, 13, 29, 37, 61, 73, 157, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061, 3217, 3253, 3313, 3517, 3733, 4021, 4057, 4177, 4261, 4273, 4357, 4441
Offset: 1

Views

Author

Antti Karttunen, Dec 11 2015

Keywords

Comments

It seems that n=4 is the only case where A265395(n)/A265394(n) is not integral (as 33/6 = 11/2), thus for other n, a(n) actually seems to give the value of A265395(n)/A265394(n).

Crossrefs

For many terms coincides with A005383, A079147, A113733 and A256072.

Programs

A265388 a(n) = gcd{k=1..n-1} binomial(2*n, 2*k), a(1) = 0.

Original entry on oeis.org

0, 6, 15, 14, 15, 33, 91, 2, 51, 19, 11, 23, 65, 3, 435, 62, 17, 3, 703, 1, 41, 43, 23, 47, 35, 1, 159, 7, 29, 59, 1891, 2, 1, 67, 1, 71, 2701, 1, 1, 79, 123, 249, 43, 1, 267, 1, 47, 1, 679, 1, 101, 103, 53, 321, 109, 1, 113, 1, 59, 1, 671, 1, 5, 254, 5, 1441
Offset: 1

Views

Author

Michel Marcus, Dec 08 2015

Keywords

Crossrefs

Cf. A265394 (positions of records), A265395 (record values), A265401 (positions of ones), A265402 (fixed points), A265403 (positions where a(n) = 2n-1).

Programs

  • Mathematica
    Table[GCD @@ Array[Binomial[2 n, 2 #] &, {n - 1}], {n, 1, 66}] (* Michael De Vlieger, Dec 09 2015, modified to match the new corrected data by Antti Karttunen, Dec 11 2015 *)
  • PARI
    allocatemem(2^30); A265388(n) = if(n<=1, 0, gcd(vector(n-1, k, binomial(2*n, 2*k)))) \\ PARI versions before 2.8 return an erroneous value 1 for gcd of an empty vector/set. - Michel Marcus, Dec 08 2015 and Antti Karttunen, Dec 11 2015
    for(n=1, 10000, write("b265388.txt", n, " ", A265388(n)));
    
  • Scheme
    (define (A265388 n) (let loop ((z 0) (k 1)) (cond ((>= k n) z) ((= 1 z) z) (else (loop (gcd z (A007318tr (* 2 n) (* 2 k))) (+ k 1))))))
    ;; A version using fold. Instead of fold-left we could as well use fold-right:
    (define (A265388 n) (fold-left gcd 0 (map (lambda (k) (A007318tr (* 2 n) (* 2 k))) (range1-n (- n 1)))))
    (define (range1-n n) (let loop ((n n) (result (list))) (cond ((zero? n) result) (else (loop (- n 1) (cons n result))))))
    ;; In above code A007318tr(n,k) computes the binomial coefficient C(n,k), i.e., Pascal's triangle A007318. - Antti Karttunen, Dec 11 2015

Formula

For prime p>2, valuation(a(n), p) = 1 if 2*n = p^i+p^j for some i<=j, 0 otherwise (see Theorem 2 in McTague).

A265395 Record values in A265388.

Original entry on oeis.org

0, 6, 15, 33, 91, 435, 703, 1891, 2701, 12403, 18721, 38503, 49141, 79003, 88831, 104653, 146611, 188191, 218791, 226801, 269011, 286903, 385003, 497503, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1314631, 1373653, 1537381, 1755001, 1869211, 1987021, 2035153, 2284453, 2741311, 3059101, 3270403, 3363121, 3913003
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2015

Keywords

Comments

Question: Are all terms apart from 0 and 435 (= 3*5*29) semiprimes? See also comments in A265394 & A265396.

Crossrefs

Programs

  • PARI
    lista(nn) = {r = 0; for (n=1, nn, nr = gcd(vector(n-1, k, binomial(2*n, 2*k))); if (nr > r, print1(nr, ", "); r = nr););} \\ Michel Marcus, Dec 08 2015. Note: this gives correct value for a(1) only from PARI version 2.8 onward, see A265388 for why. - Antti Karttunen, Dec 11 2015

Formula

a(n) = A265388(A265394(n)).
Showing 1-3 of 3 results.