cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A265388 a(n) = gcd{k=1..n-1} binomial(2*n, 2*k), a(1) = 0.

Original entry on oeis.org

0, 6, 15, 14, 15, 33, 91, 2, 51, 19, 11, 23, 65, 3, 435, 62, 17, 3, 703, 1, 41, 43, 23, 47, 35, 1, 159, 7, 29, 59, 1891, 2, 1, 67, 1, 71, 2701, 1, 1, 79, 123, 249, 43, 1, 267, 1, 47, 1, 679, 1, 101, 103, 53, 321, 109, 1, 113, 1, 59, 1, 671, 1, 5, 254, 5, 1441
Offset: 1

Views

Author

Michel Marcus, Dec 08 2015

Keywords

Crossrefs

Cf. A265394 (positions of records), A265395 (record values), A265401 (positions of ones), A265402 (fixed points), A265403 (positions where a(n) = 2n-1).

Programs

  • Mathematica
    Table[GCD @@ Array[Binomial[2 n, 2 #] &, {n - 1}], {n, 1, 66}] (* Michael De Vlieger, Dec 09 2015, modified to match the new corrected data by Antti Karttunen, Dec 11 2015 *)
  • PARI
    allocatemem(2^30); A265388(n) = if(n<=1, 0, gcd(vector(n-1, k, binomial(2*n, 2*k)))) \\ PARI versions before 2.8 return an erroneous value 1 for gcd of an empty vector/set. - Michel Marcus, Dec 08 2015 and Antti Karttunen, Dec 11 2015
    for(n=1, 10000, write("b265388.txt", n, " ", A265388(n)));
    
  • Scheme
    (define (A265388 n) (let loop ((z 0) (k 1)) (cond ((>= k n) z) ((= 1 z) z) (else (loop (gcd z (A007318tr (* 2 n) (* 2 k))) (+ k 1))))))
    ;; A version using fold. Instead of fold-left we could as well use fold-right:
    (define (A265388 n) (fold-left gcd 0 (map (lambda (k) (A007318tr (* 2 n) (* 2 k))) (range1-n (- n 1)))))
    (define (range1-n n) (let loop ((n n) (result (list))) (cond ((zero? n) result) (else (loop (- n 1) (cons n result))))))
    ;; In above code A007318tr(n,k) computes the binomial coefficient C(n,k), i.e., Pascal's triangle A007318. - Antti Karttunen, Dec 11 2015

Formula

For prime p>2, valuation(a(n), p) = 1 if 2*n = p^i+p^j for some i<=j, 0 otherwise (see Theorem 2 in McTague).

A265403 Numbers n for which gcd{k=1..n-1} binomial(2*n, 2*k) = 2n-1.

Original entry on oeis.org

10, 12, 21, 22, 24, 30, 34, 36, 40, 51, 52, 55, 57, 69, 70, 76, 82, 84, 87, 90, 96, 99, 100, 106, 112, 114, 115, 117, 120, 129, 132, 136, 141, 142, 147, 154, 156, 159, 166, 174, 177, 180, 184, 187, 192, 195, 201, 205, 210, 216, 217, 220, 222, 225, 231, 232, 234, 240, 244, 246, 250, 252, 255, 261, 262, 274, 279, 282, 285, 286, 294, 297, 300
Offset: 1

Views

Author

Antti Karttunen, Dec 08 2015

Keywords

Crossrefs

Cf. A265388.
Cf. also A265402.

Programs

  • Mathematica
    Select[Range@ 300, GCD @@ Array[Function[k, Binomial[2 #, 2 k]], {# - 1}] == 2 # - 1 &] (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    isok(n) = (n>1) && gcd(vector(n-1, k, binomial(2*n, 2*k))) == 2*n-1; \\ Michel Marcus, Dec 08 2015, edited by Antti Karttunen, Dec 11 2015 (see A265388 for why).
Showing 1-2 of 2 results.