cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A118173 Decimal representation of n-th iteration of the Rule 188 elementary cellular automaton starting with a single black cell.

Original entry on oeis.org

1, 3, 5, 15, 29, 55, 93, 247, 477, 887, 1501, 3959, 7645, 14199, 24029, 63351, 122333, 227191, 384477, 1013623, 1957341, 3635063, 6151645, 16217975, 31317469, 58161015, 98426333, 259487607, 501079517, 930576247, 1574821341, 4151801719, 8017272285
Offset: 0

Views

Author

Eric W. Weisstein, Apr 13 2006

Keywords

Examples

			1; --> 1
0, 1, 1; --> 3
0, 0, 1, 0, 1; --> 5
0, 0, 0, 1, 1, 1, 1; --> 15
0, 0, 0, 0, 1, 1, 1, 0, 1; --> 29
		

Crossrefs

Programs

  • Mathematica
    clip[lst_] := Block[{p = Flatten@ Position[lst, 1]}, Take[lst, {Min@ p, Max@ p}]]; FromDigits[#, 2] & /@ Map[clip, CellularAutomaton[188, {{1}, 0}, 32]] (* Michael De Vlieger, Oct 08 2015 *)
    RecurrenceTable[{a[n+6]==a[n+4] + 16*a[n+2] - 16*a[n], a[0]==1, a[1]==3, a[2]==5, a[3]==15, a[4]==29, a[5]==55}, a, {n,0,100}] (* _G. C. Greubel, Oct 08 2015 *)
  • PARI
    Vec(-(8*x^5-8*x^4-12*x^3-4*x^2-3*x-1)/((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x^2+1)) + O(x^40)) \\ Colin Barker, Oct 08 2015
    
  • Python
    print([28*4**n//15 + 2**n - (28*2**n//15)*2**n for n in range(50)]) # Karl V. Keller, Jr., Nov 11 2021

Formula

a(n) = (1/30)*(-14 + 3*i*(2*i)^n + 55*2^n) for n odd,
a(n) = (1/15)*(-13 + 3*(2*i)^n + 25*2^n) for n even, where i = sqrt(-1).
From Colin Barker, Oct 08 2015: (Start)
G.f.: -(8*x^5-8*x^4-12*x^3-4*x^2-3*x-1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x^2+1)).
a(n) = a(n-2) + 16*a(n-4) - 16*a(n-6) for n>5. (End)
E.g.f.: (1/15)*(6*sinh(x) + (5/2)*sinh(2x) + 25*exp(2x) - 13*exp(x)) + (1/10)*(2*cos(2x)-sin(2x)). - G. C. Greubel, Oct 08 2015
a(n) = floor(28*4^n/15) + 2^n - floor(28*2^n/15)*2^n. - Karl V. Keller, Jr., Nov 11 2021
Showing 1-1 of 1 results.