A265508 Number of unordered pairs {p,q} of partitions of n into distinct parts such that p and q are incomparable in the dominance order.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 29, 42, 68, 109, 162, 240, 364, 527, 749, 1096, 1529, 2162, 3026, 4179, 5702, 7926, 10650, 14412, 19437, 26042, 34560, 46077, 60617, 79893, 104850, 136851, 177884, 231526, 298868, 385221, 496159, 635725, 812342
Offset: 0
Keywords
Examples
a(9) = 1: {621,54}. a(10) = 1: {721,64}. a(11) = 3: {821,74}, {821,65}, {731,65}. a(12) = 5: {6321,543}, {921,84}, {921,75}, {831,75}, {732,651}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Wikipedia, Dominance Order
Programs
-
Maple
b:= proc(n, m, i, j, t) option remember; `if`(n
0, b(n, m, i, j-1, true), 0)+ b(n, m, i-1, j, false)+b(n-i, m-j, max(0, min(n-i, i-1)), max(0, min(m-j, j-1)), true)))) end: g:= proc(n, i) option remember; `if`(i*(i+1)/2 n, 0, g(n-i, i-1)))) end: a:= n-> (t-> t*(t+1)/2)(g(n$2))-b(n$4, true): seq(a(n), n=0..45); -
Mathematica
b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n < m, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Max[0, Min[n-i, i-1]], Max[0, Min[m-j, j-1]], True]]]]; g[n_, i_] := g[n, i] = If[i*(i+1)/2 < n, 0, If[n == 0, 1, g[n, i-1] + If[i > n, 0, g[n-i, i-1]]]]; a[n_] := (#*(#+1)/2&)[g[n, n]] - b[n, n, n, n, True]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)