A265583 Array T(n,k) = k*(k-1)^(n-1) read by ascending antidiagonals; k,n >= 1.
1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 12, 12, 5, 0, 2, 24, 36, 20, 6, 0, 2, 48, 108, 80, 30, 7, 0, 2, 96, 324, 320, 150, 42, 8, 0, 2, 192, 972, 1280, 750, 252, 56, 9, 0, 2, 384, 2916, 5120, 3750, 1512, 392, 72, 10, 0, 2, 768, 8748, 20480, 18750, 9072, 2744, 576, 90, 11
Offset: 1
Examples
1 2 3 4 5 6 7 0 2 6 12 20 30 42 0 2 12 36 80 150 252 0 2 24 108 320 750 1512 0 2 48 324 1280 3750 9072 0 2 96 972 5120 18750 54432 0 2 192 2916 20480 93750 326592 T(3,3)=12 counts aba, abc, aca, acb, bab, bac, bca, bcb, cab, cac, cba, cbc. Words like aab or cbb are not counted.
Links
- Robert Israel, Table of n, a(n) for n = 1..10011(first 141 antidiagonals, flattened)
Crossrefs
Programs
-
GAP
T:= function(n,k) if (n=1 and k=1) then return 1; else return k*(k-1)^(n-k-1); fi; end; Flat(List([2..15], n-> List([1..n-1], k-> T(n,k) ))); # G. C. Greubel, Aug 10 2019
-
Magma
T:= func< n,k | (n eq 1 and k eq 1) select 1 else k*(k-1)^(n-k-1) >; [T(n,k): k in [1..n-1], n in [2..15]]; // G. C. Greubel, Aug 10 2019
-
Maple
A265583 := proc(n,k) k*(k-1)^(n-1) ; end proc: seq(seq( A265583(d-k,k),k=1..d-1),d=2..13) ;
-
Mathematica
T[1,1] = 1; T[n_, k_] := If[k==1, 0, k*(k-1)^(n-1)]; Table[T[n-k,k], {n,2,12}, {k,1,n-1}] // Flatten (* Amiram Eldar, Dec 13 2018 *)
-
PARI
T(n,k) = if(n==k==1, 1, k*(k-1)^(n-k-1) ); for(n=2,15, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 10 2019
-
Sage
def T(n, k): if (n==k==1): return 1 else: return k*(k-1)^(n-k-1) [[T(n, k) for k in (1..n-1)] for n in (2..15)] # G. C. Greubel, Aug 10 2019
Formula
G.f. for column k: k*x/(1-(k-1)*x). - R. J. Mathar, Dec 12 2015
G.f. for array: y/(y-1) - (1+1/x)*y*LerchPhi(y,1,-1/x). - Robert Israel, Dec 13 2018
Comments