cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265583 Array T(n,k) = k*(k-1)^(n-1) read by ascending antidiagonals; k,n >= 1.

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 12, 12, 5, 0, 2, 24, 36, 20, 6, 0, 2, 48, 108, 80, 30, 7, 0, 2, 96, 324, 320, 150, 42, 8, 0, 2, 192, 972, 1280, 750, 252, 56, 9, 0, 2, 384, 2916, 5120, 3750, 1512, 392, 72, 10, 0, 2, 768, 8748, 20480, 18750, 9072, 2744, 576, 90, 11
Offset: 1

Views

Author

R. J. Mathar, Dec 10 2015

Keywords

Comments

T(n,k) is the number of n-letter words in a k-letter alphabet with no adjacent letters the same. The factor k represents the number of choices of the first letter, and the n-1 times repeated factor k-1 represents the choices of the next n-1 letters avoiding their predecessor.
The antidiagonal sums are s(d) = 1, 2, 5, 12, 31, 88, 275, 942, 3513, 14158, 61241, 282632, .. for d = n+k >= 2.

Examples

			      1       2       3       4       5       6       7
      0       2       6      12      20      30      42
      0       2      12      36      80     150     252
      0       2      24     108     320     750    1512
      0       2      48     324    1280    3750    9072
      0       2      96     972    5120   18750   54432
      0       2     192    2916   20480   93750  326592
T(3,3)=12 counts aba, abc, aca, acb, bab, bac, bca, bcb, cab, cac, cba, cbc. Words like aab or cbb are not counted.
		

Crossrefs

Cf. A007283 (column 3), A003946 (column 4), A003947 (column 5), A002378 (row 2), A011379 (row 3), A179824 (row 4), A055897 (diagonal), A265584.

Programs

  • GAP
    T:= function(n,k)
        if (n=1 and k=1) then return 1;
        else return k*(k-1)^(n-k-1);
        fi;
      end;
    Flat(List([2..15], n-> List([1..n-1], k-> T(n,k) ))); # G. C. Greubel, Aug 10 2019
  • Magma
    T:= func< n,k | (n eq 1 and k eq 1) select 1 else k*(k-1)^(n-k-1) >;
    [T(n,k): k in [1..n-1], n in [2..15]]; // G. C. Greubel, Aug 10 2019
    
  • Maple
    A265583 := proc(n,k)
        k*(k-1)^(n-1) ;
    end proc:
    seq(seq( A265583(d-k,k),k=1..d-1),d=2..13) ;
  • Mathematica
    T[1,1] = 1; T[n_, k_] := If[k==1, 0, k*(k-1)^(n-1)]; Table[T[n-k,k], {n,2,12}, {k,1,n-1}] // Flatten (* Amiram Eldar, Dec 13 2018 *)
  • PARI
    T(n,k) = if(n==k==1, 1, k*(k-1)^(n-k-1) );
    for(n=2,15, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 10 2019
    
  • Sage
    def T(n, k):
        if (n==k==1): return 1
        else: return k*(k-1)^(n-k-1)
    [[T(n, k) for k in (1..n-1)] for n in (2..15)] # G. C. Greubel, Aug 10 2019
    

Formula

T(n,k) = k*A051129(n-1,k-1) = k*A003992(k-1,n-1).
G.f. for column k: k*x/(1-(k-1)*x). - R. J. Mathar, Dec 12 2015
G.f. for array: y/(y-1) - (1+1/x)*y*LerchPhi(y,1,-1/x). - Robert Israel, Dec 13 2018