A265627 Number of n X n "primitive" binary matrices.
2, 10, 498, 65040, 33554370, 68718945018, 562949953421058, 18446744065119682560, 2417851639229258080977408, 1267650600228227149696920981450, 2658455991569831745807614120560685058, 22300745198530623141526273539119741048774160
Offset: 1
Keywords
Examples
We see a(2) = 10 since there are 16 possible 2 X 2 binary matrices, two are excluded because all their entries are the same, and four more are excluded because they are [[1,0],[1,0]] or a transpose or a negation.
Crossrefs
Cf. A027375.
Programs
-
Maple
with(numtheory): prim := proc(k,m,n) option remember; dm := divisors(m); dn := divisors(n); s := 0; for d1 in dm do for d2 in dn do s := s+(k^(m*n/(d1*d2)))*mobius(d1)*mobius(d2); od; od; s; end: seq(prim(2,n,n), n=1..40);
-
Mathematica
prim[k_, m_, n_] := prim[k, m, n] = Module[{s = 0}, Do[Do[s = s + (k^(m*n/(d1*d2)))*MoebiusMu[d1]*MoebiusMu[d2], {d1, Divisors[m]}], {d2, Divisors[n]}]; s]; a[n_] := prim[2, n, n] Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jul 24 2022, after Maple code *)
Formula
A general formula for the number of m X n "primitive" matrices over an alphabet of size k is Sum_{d|m, e|n} k^{m*n/(d*e)}*mu(d)*mu(e), where mu is the Möbius function.
Comments