A323860 Table read by antidiagonals where A(n,k) is the number of n X k aperiodic binary arrays.
2, 2, 2, 6, 8, 6, 12, 54, 54, 12, 30, 216, 486, 216, 30, 54, 990, 4020, 4020, 990, 54, 126, 3912, 32730, 64800, 32730, 3912, 126, 240, 16254, 261414, 1047540, 1047540, 261414, 16254, 240, 504, 64800, 2097018, 16764840, 33554250, 16764840, 2097018, 64800, 504
Offset: 1
Examples
Table begins: 1 2 3 4 ------------------------ 1: | 2 2 6 12 2: | 2 8 54 216 3: | 6 54 486 4020 4: | 12 216 4020 64800 The A(2,2) = 8 arrays: [0 0] [0 0] [0 1] [0 1] [1 0] [1 0] [1 1] [1 1] [0 1] [1 0] [0 0] [1 1] [0 0] [1 1] [0 1] [1 0] Note that the following are not aperiodic even though their row and column sequences are independently aperiodic: [1 0] [0 1] [0 1] [1 0]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
GAP
# See A323861 for code. for n in [1..8] do for k in [1..8] do Print(n*k*A323861(n,k), ", "); od; Print("\n"); od; # Andrew Howroyd, Aug 21 2019
-
Mathematica
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],apermatQ]],{n,8},{k,n-1}]
Formula
T(n,k) = n*k*A323861(n,k). - Andrew Howroyd, Aug 21 2019
Extensions
Terms a(29) and beyond from Andrew Howroyd, Aug 21 2019
Comments