cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A323860 Table read by antidiagonals where A(n,k) is the number of n X k aperiodic binary arrays.

Original entry on oeis.org

2, 2, 2, 6, 8, 6, 12, 54, 54, 12, 30, 216, 486, 216, 30, 54, 990, 4020, 4020, 990, 54, 126, 3912, 32730, 64800, 32730, 3912, 126, 240, 16254, 261414, 1047540, 1047540, 261414, 16254, 240, 504, 64800, 2097018, 16764840, 33554250, 16764840, 2097018, 64800, 504
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional case is A027375.
An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Table begins:
       1     2     3     4
    ------------------------
  1: |  2     2     6    12
  2: |  2     8    54   216
  3: |  6    54   486  4020
  4: | 12   216  4020 64800
The A(2,2) = 8 arrays:
  [0 0] [0 0] [0 1] [0 1] [1 0] [1 0] [1 1] [1 1]
  [0 1] [1 0] [0 0] [1 1] [0 0] [1 1] [0 1] [1 0]
Note that the following are not aperiodic even though their row and column sequences are independently aperiodic:
  [1 0] [0 1]
  [0 1] [1 0]
		

Crossrefs

First and last columns are A027375. Main diagonal is A323863.

Programs

  • GAP
    # See A323861 for code.
    for n in [1..8] do for k in [1..8] do Print(n*k*A323861(n,k), ", "); od; Print("\n"); od; # Andrew Howroyd, Aug 21 2019
  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],apermatQ]],{n,8},{k,n-1}]

Formula

T(n,k) = n*k*A323861(n,k). - Andrew Howroyd, Aug 21 2019

Extensions

Terms a(29) and beyond from Andrew Howroyd, Aug 21 2019

A323867 Number of aperiodic arrays of positive integers summing to n.

Original entry on oeis.org

1, 1, 1, 5, 11, 33, 57, 157, 303, 683, 1358, 2974, 5932, 12560, 25328, 52400, 106256, 217875, 441278, 899955, 1822703, 3701401, 7491173, 15178253, 30691135, 62085846, 125435689, 253414326, 511547323, 1032427635, 2082551931, 4199956099, 8466869525, 17064777665
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional case is A000740.
An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			The a(5) = 33 arrays:
  5  14  23  32  41  113  122  131  212  221  311  1112  1121  1211  2111
.
  1  2  3  4  11  11  12  21
  4  3  2  1  12  21  11  11
.
  1  1  1  2  2  3
  1  2  3  1  2  1
  3  2  1  2  1  1
.
  1  1  1  2
  1  1  2  1
  1  2  1  1
  2  1  1  1
		

Crossrefs

Programs

  • GAP
    List([0..30], A323867); # See A323861 for code; Andrew Howroyd, Aug 21 2019
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    Table[Length[Union@@Table[Select[ptnmats[k],apermatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,15}]

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 21 2019

A323864 Number of aperiodic binary arrays of size n.

Original entry on oeis.org

1, 2, 4, 12, 32, 60, 216, 252, 912, 1494, 3960, 4092, 23904, 16380, 65016, 130920, 324960, 262140, 1569132, 1048572, 6281280, 8388072, 16769016, 16777212, 134150880, 100663050, 268402680, 536865840, 1610449344, 1073741820, 8589664080, 4294967292, 25768888320
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			The a(4) = 32 arrays:
  [0001][0010][0011][0100][0110][0111][1000][1001][1011][1100][1101][1110]
.
  [00] [00] [01] [01] [10] [10] [11] [11]
  [01] [10] [00] [11] [00] [11] [01] [10]
.
  [0] [0] [0] [0] [0] [0] [1] [1] [1] [1] [1] [1]
  [0] [0] [0] [1] [1] [1] [0] [0] [0] [1] [1] [1]
  [0] [1] [1] [0] [1] [1] [0] [0] [1] [0] [0] [1]
  [1] [0] [1] [0] [0] [1] [0] [1] [1] [0] [1] [0]
		

Crossrefs

Programs

  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    zaz[n_]:=Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n]);
    Table[Length[Select[zaz[n],apermatQ]],{n,10}]

Formula

a(n) = Sum_{d|n} A323860(d, n/d). - Andrew Howroyd, Aug 21 2019

Extensions

Terms a(18) and beyond from Andrew Howroyd, Aug 21 2019

A323863 Number of n X n aperiodic binary arrays.

Original entry on oeis.org

1, 2, 8, 486, 64800, 33554250, 68718675672, 562949953420302, 18446744060824780800, 2417851639229257812542976, 1267650600228226023797043513000, 2658455991569831745807614120560664598, 22300745198530623141521551172073990303938400
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			The a(2) = 8 arrays are:
  [0 0] [0 0] [0 1] [0 1] [1 0] [1 0] [1 1] [1 1]
  [0 1] [1 0] [0 0] [1 1] [0 0] [1 1] [0 1] [1 0]
Note that the following are not aperiodic even though their row and column sequences are (independently) aperiodic:
  [1 0] [0 1]
  [0 1] [1 0]
		

Crossrefs

Programs

  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    Table[Length[Select[(Partition[#,n]&)/@Tuples[{0,1},n^2],apermatQ]],{n,4}]

Formula

a(n) = 2^(n^2) - (n+1)*2^n + 2*n if n is prime. - Robert Israel, Feb 04 2019
a(n) = n^2 * A323872(n). - Andrew Howroyd, Aug 21 2019

Extensions

a(5) from Robert Israel, Feb 04 2019
a(6)-a(7) from Giovanni Resta, Feb 05 2019
Terms a(8) and beyond from Andrew Howroyd, Aug 21 2019

A324462 Number of simple graphs covering n vertices with distinct rotations.

Original entry on oeis.org

1, 0, 0, 3, 28, 765, 26958, 1887277, 252458904, 66376420155, 34508978662350, 35645504882731557, 73356937843604425644, 301275024444053951967585, 2471655539736990372520379226, 40527712706903544100966076156895, 1328579255614092949957261201822704816
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2019

Keywords

Comments

A simple graph with n vertices has distinct rotations if all n rotations of its vertex set act on the edge set to give distinct graphs. It is covering if there are no isolated vertices. These are different from aperiodic graphs and acyclic graphs but are similar to aperiodic sequences (A000740) and aperiodic arrays (A323867).

Crossrefs

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]]&]],{n,0,5}]
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, moebius(n/d)*sum(k=0, d, (-1)^(d-k)*binomial(d,k)*2^(k*(k-1)*n/(2*d) + k*(n/d\2)))))} \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = Sum{d|n} mu(n/d) * Sum_{k=0..d} (-1)^(d-k)*binomial(d,k)*2^( k*(k-1)*n/(2*d) + k*(floor(n/(2*d))) ) for n > 0. - Andrew Howroyd, Aug 19 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 19 2019

A324514 Number of aperiodic permutations of {1..n}.

Original entry on oeis.org

1, 0, 3, 16, 115, 660, 5033, 39936, 362718, 3624920, 39916789, 478953648, 6227020787, 87177645996, 1307674338105, 20922779566080, 355687428095983, 6402373519409856, 121645100408831981, 2432902004460734000, 51090942171698415483, 1124000727695858073380
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2019

Keywords

Comments

A permutation is defined to be aperiodic if every cyclic rotation of {1..n} acts on the cycle decomposition to produce a different digraph.

Examples

			The a(4) = 16 aperiodic permutations:
  (1243) (1324) (1342) (1423)
  (2134) (2314) (2413) (2431)
  (3124) (3142) (3241) (3421)
  (4132) (4213) (4231) (4312)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],UnsameQ@@NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]&]],{n,6}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^d*d!); \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = A306669(n) * n.
a(n) = Sum_{d|n} mu(n/d)*(n/d)^d*d!. - Andrew Howroyd, Aug 19 2019

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019

A323862 Table read by antidiagonals where A(n,k) is the number of n X k binary arrays in which both the sequence of rows and the sequence of columns are (independently) aperiodic.

Original entry on oeis.org

2, 2, 2, 6, 10, 6, 12, 54, 54, 12, 30, 228, 498, 228, 30, 54, 990, 4020, 4020, 990, 54, 126, 3966, 32730, 65040, 32730, 3966, 126, 240, 16254, 261522, 1047540, 1047540, 261522, 16254, 240, 504, 65040, 2097018, 16768860, 33554370, 16768860, 2097018, 65040, 504
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

A sequence of length n is aperiodic if all n rotations of its entries are distinct.

Examples

			Array begins:
        2        2        6       12       30
        2       10       54      228      990
        6       54      498     4020    32730
       12      228     4020    65040  1047540
       30      990    32730  1047540 33554370
		

Crossrefs

First and last columns are A027375. Main diagonal is A265627.

Programs

  • Mathematica
    nn=5;
    a[n_,k_]:=Sum[MoebiusMu[d]*MoebiusMu[e]*2^(n/d*k/e),{d,Divisors[n]},{e,Divisors[k]}];
    Table[a[n-k,k],{n,nn},{k,n-1}]
  • PARI
    A(n,k) = {sumdiv(n, d, sumdiv(k,e, moebius(d) * moebius(e) * 2^((n/d) * (k/e))))} \\ Andrew Howroyd, Jan 19 2023

Formula

A(n,k) = Sum_{d|n, e|k} mu(d) * mu(e) * 2^((n/d) * (k/e)).

A323868 Number of matrices of size n whose entries cover an initial interval of positive integers.

Original entry on oeis.org

1, 6, 26, 225, 1082, 18732, 94586, 2183340, 21261783, 408990252, 3245265146, 168549405570, 1053716696762, 42565371881772, 921132763911412, 26578273409906775, 260741534058271802, 20313207979541071938, 185603174638656822266, 16066126777466305218690
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Examples

			The 42 matrices of size 4 whose entries cover {1,2}:
  1222 2111 1122 2211 1212 2121 1221 2112 1112 2221 1121 2212 1211 2122
.
  12  21  11  22  12  21  12  21  11  22  11  22  12  21
  22  11  22  11  12  21  21  12  12  21  21  12  11  22
.
  1   2   1   2   1   2   1   2   1   2   1   2   1   2
  2   1   1   2   2   1   2   1   1   2   1   2   2   1
  2   1   2   1   1   2   2   1   1   2   2   1   1   2
  2   1   2   1   2   1   1   2   2   1   1   2   1   2
The 18 matrices of size 4 whose entries cover {1,2} with multiplicities {2,2}:
  [1 1 2 2] [2 2 1 1] [1 2 1 2] [2 1 2 1] [1 2 2 1] [2 1 1 2]
.
  [1 1] [2 2] [1 2] [2 1] [1 2] [2 1]
  [2 2] [1 1] [1 2] [2 1] [2 1] [1 2]
.
  [1] [2] [1] [2] [1] [2]
  [1] [2] [2] [1] [2] [1]
  [2] [1] [1] [2] [2] [1]
  [2] [1] [2] [1] [1] [2]
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> b(n)*numtheory[tau](n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Feb 04 2019
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}];
    Table[Length[nrmmats[n]],{n,6}]
    Table[DivisorSigma[0, n]*Sum[k! StirlingS2[n, k], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Feb 05 2019 *)
  • PARI
    a(n) = numdiv(n)*sum(k=0, n, stirling(n, k, 2)*k!); \\ Michel Marcus, Feb 05 2019

Formula

a(n) = A000005(n) * A000670(n).

A324512 Number of aperiodic n-gons.

Original entry on oeis.org

1, 0, 0, 0, 10, 42, 357, 2400, 20142, 180280, 1814395, 19944804, 239500794, 3113326062, 43589143560, 653834280960, 10461394943992, 177843662409312, 3201186852863991, 60822549182544440, 1216451004087794832, 25545471063559372750, 562000363888803839989
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2019

Keywords

Comments

We define an n-gon to be aperiodic if all n rotations of its vertex set act on the edge set to give distinct n-gons. These are different from aperiodic graphs and acyclic graphs but are similar to aperiodic sequences (A000740) and aperiodic arrays (A323867).

Examples

			The a(5) = 10 aperiodic polygon edge sets:
  {{1,2},{1,3},{2,4},{3,5},{4,5}}
  {{1,2},{1,3},{2,5},{3,4},{4,5}}
  {{1,2},{1,4},{2,3},{3,5},{4,5}}
  {{1,2},{1,4},{2,5},{3,4},{3,5}}
  {{1,2},{1,5},{2,4},{3,4},{3,5}}
  {{1,3},{1,4},{2,3},{2,5},{4,5}}
  {{1,3},{1,5},{2,3},{2,4},{4,5}}
  {{1,3},{1,5},{2,4},{2,5},{3,4}}
  {{1,4},{1,5},{2,3},{2,4},{3,5}}
  {{1,4},{1,5},{2,3},{2,5},{3,4}}
		

Crossrefs

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
  • PARI
    a(n)={if(n<3, n==1, (if(n%2, 0, -n*(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n))/2)} \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = n * A324513(n).

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019
Showing 1-9 of 9 results.