A323870
Number of toroidal necklaces of size n whose entries cover an initial interval of positive integers.
Original entry on oeis.org
1, 4, 10, 61, 218, 3136, 13514, 272998, 2362439, 40899248, 295024106, 14045787790, 81055130522, 3040383719360, 61408850927732, 1661142088494553, 15337737297545402, 1128511554421317128, 9768588138876674858, 803306338873366385030, 15452347618762680757428
Offset: 1
The a(3) = 10 toroidal necklaces:
[1 2 3] [1 3 2] [1 2 2] [1 1 2] [1 1 1]
.
[1] [1] [1] [1] [1]
[2] [3] [2] [1] [1]
[3] [2] [2] [2] [1]
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
Table[Length[Select[nrmmats[n],neckmatQ]],{n,6}]
-
U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * k^(n*m/lcm(c, d))));
R(v)={sum(n=1, #v, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*v[k]))}
a(n)={if(n < 1, n==0, R(vector(n, k, sumdiv(n, d, U(d, n/d, k))) ))} \\ Andrew Howroyd, Aug 18 2019
A323871
Number of aperiodic toroidal necklaces of size n whose entries cover an initial interval of positive integers.
Original entry on oeis.org
1, 2, 8, 53, 216, 3112, 13512, 272844, 2362412, 40898808, 295024104, 14045779864, 81055130520, 3040383692328, 61408850927280, 1661142087743940, 15337737297545400, 1128511554416582908, 9768588138876674856, 803306338873264137240, 15452347618762680730384
Offset: 1
The a(3) = 8 aperiodic toroidal necklaces:
[1 2 3] [1 3 2] [1 2 2] [1 1 2]
.
[1] [1] [1] [1]
[2] [3] [2] [1]
[3] [2] [2] [2]
-
List([1..30], A323871); # See A323861 for code; Andrew Howroyd, Aug 21 2019
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}];
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
Table[Length[Select[nrmmats[n],neckmatQ[#]&&apermatQ[#]&]],{n,6}]
A323869
Number of aperiodic matrices of size n whose entries cover an initial interval of positive integers.
Original entry on oeis.org
1, 4, 24, 212, 1080, 18672, 94584, 2182752, 21261708, 408988080, 3245265144, 168549358368, 1053716696760, 42565371692592, 921132763909200, 26578273403903040, 260741534058271800, 20313207979498492344, 185603174638656822264, 16066126777465282744800, 324499299994016295338064
Offset: 1
The a(3) = 24 matrices:
[123][132][213][312][231][321][122][211][112][221][121][212]
.
[1][1][2][3][2][3][1][2][1][2][1][2]
[2][3][1][1][3][2][2][1][1][2][2][1]
[3][2][3][2][1][1][2][1][2][1][1][2]
-
List([1..30], A323869); # See A323861 for code; Andrew Howroyd, Aug 21 2019
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}];
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
Table[Length[Select[nrmmats[n],apermatQ]],{n,6}]
Showing 1-3 of 3 results.
Comments