A323865 Number of aperiodic binary toroidal necklaces of size n.
1, 2, 2, 4, 8, 12, 36, 36, 114, 166, 396, 372, 1992, 1260, 4644, 8728, 20310, 15420, 87174, 55188, 314064, 399432, 762228, 729444, 5589620, 4026522, 10323180, 19883920, 57516048, 37025580, 286322136, 138547332, 805277760, 1041203944, 2021145660, 3926827224
Offset: 0
Keywords
Examples
Inequivalent representatives of the a(6) = 36 aperiodic necklaces: 000001 000011 000101 000111 001011 001101 001111 010111 011111 . 000 000 001 001 001 001 001 011 011 001 011 010 011 101 110 111 101 111 . 00 00 00 00 00 01 01 01 01 00 01 01 01 11 01 01 10 11 01 01 10 11 01 10 11 11 11 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- S. N. Ethier, Counting toroidal binary arrays, J. Int. Seq. 16 (2013) #13.4.7.
Crossrefs
Programs
-
Mathematica
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]]; zaz[n_]:=Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n]); Table[If[n==0,1,Length[Union[First/@matcyc/@Select[zaz[n],And[apermatQ[#],neckmatQ[#]]&]]]],{n,0,10}]
Formula
a(n) = Sum_{d|n} A323861(d, n/d) for n > 0. - Andrew Howroyd, Aug 21 2019
Extensions
Terms a(19) and beyond from Andrew Howroyd, Aug 21 2019
Comments