A265640 Prime factorization palindromes (see comments for definition).
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 31, 32, 36, 37, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 108, 109, 112, 113, 116, 117, 121, 124, 125, 127, 128, 131, 137, 139, 144
Offset: 1
Keywords
Examples
44 is a member, since 44=2*11*2. 52 is a member, since 52=2*13*2. [This illustrates the fact that the digits don't need to form a palindrome. This is not a base-dependent sequence. - _N. J. A. Sloane_, Oct 05 2024] 180 is a member, since 180=2*3*5*3*2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # to get all terms <= N P:= [1,op(select(isprime, [2,seq(i,i=3..N,2)]))]: sort([seq(seq(p*x^2,x=1..floor(sqrt(N/p))),p=P)]); # Robert Israel, Feb 03 2016
-
Mathematica
M = 200; P = Join[{1}, Select[Join[{2}, Range[3, M, 2]], PrimeQ]]; Sort[ Flatten[Table[Table[p x^2, {x, 1, Floor[Sqrt[M/p]]}], {p, P}]]] (* Jean-François Alcover, Apr 09 2019, after Robert Israel *)
-
PARI
for(n=1, 200, if( ispseudoprime(core(n)) || issquare(n), print1(n, ", "))) \\ Altug Alkan, Dec 11 2015
-
Python
from math import isqrt from sympy.ntheory.factor_ import core, isprime def ok(n): return isqrt(n)**2 == n or isprime(core(n)) print([k for k in range(1, 145) if ok(k)]) # Michael S. Branicky, Oct 03 2024
-
Python
from math import isqrt from sympy import primepi, mobius def A265640(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n-(a:=isqrt(x)) for y in range(1,a+1): m = x//y**2 c -= primepi(m)-sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1)) return c return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025
Formula
lim A(x)/pi(x) = zeta(2) where A(x) is the number of a(n) <= x and pi is A000720.
Comments