A265651 Numbers n such that n-29, n-1, n+1 and n+29 are consecutive primes.
14592, 84348, 151938, 208962, 241392, 254490, 397182, 420192, 494442, 527700, 549978, 581982, 637200, 641550, 712602, 729330, 791628, 850302, 975552, 995052, 1086558, 1107852, 1157670, 1245450, 1260798, 1286148, 1494510, 1555290, 1608912
Offset: 1
Keywords
Examples
14592 is the average of the four consecutive primes 14563, 14591, 14593, 14621. 84348 is the average of the four consecutive primes 84319, 84347, 84349, 84377.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Mathematica
Select[Prime@Range@100000, NextPrime[#, {1, 2, 3}] == {28, 30, 58} + # &] + 29 (* Vincenzo Librandi, Dec 12 2015 *) Mean/@Select[Partition[Prime[Range[125000]],4,1],Differences[#]=={28,2,28}&] (* Harvey P. Dale, May 02 2016 *)
-
Python
from sympy import isprime,prevprime,nextprime for i in range(0,1000001,6): if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-29 and nextprime(i+1) == i+29 : print (i,end=', ')
Comments