cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265667 Permutation of nonnegative integers: a(n) = n + floor(n/3)*(-1)^(n mod 3).

Original entry on oeis.org

0, 1, 2, 4, 3, 6, 8, 5, 10, 12, 7, 14, 16, 9, 18, 20, 11, 22, 24, 13, 26, 28, 15, 30, 32, 17, 34, 36, 19, 38, 40, 21, 42, 44, 23, 46, 48, 25, 50, 52, 27, 54, 56, 29, 58, 60, 31, 62, 64, 33, 66, 68, 35, 70, 72, 37, 74, 76, 39, 78, 80, 41, 82, 84, 43, 86, 88, 45
Offset: 0

Views

Author

Bruno Berselli, Dec 12 2015 - based on an idea by Paul Curtz

Keywords

Comments

The inverse permutation is given by P(n) = A006368(n-1) + 1, for n >= 1, and P(0) = 0. - Wolfdieter Lang, Sep 21 2021
This permutation is given by A006369(n-1) + 1, with A006369(-1) = -1. Observed by Kevin Ryde. - Wolfdieter Lang, Sep 22 2021

Examples

			-------------------------------------------------------------------------
0, 1, 2, 3,  4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
+  +  +  +   +  +  +   +   +   +   +   +   +   +   +   +   +   +   +
0, 0, 0, 1, -1, 1, 2, -2,  2,  3, -3,  3,  4, -4,  4,  5, -5,  5,  6, ...
-------------------------------------------------------------------------
0, 1, 2, 4,  3, 6, 8,  5, 10, 12,  7, 14, 16,  9, 18, 20, 11, 22, 24, ...
-------------------------------------------------------------------------
		

Crossrefs

Cf. A064455: n+floor(n/2)*(-1)^(n mod 2).
Cf. A265888: n+floor(n/4)*(-1)^(n mod 4).
Cf. A265734: n+floor(n/5)*(-1)^(n mod 5).

Programs

  • Magma
    [n+Floor(n/3)*(-1)^(n mod 3): n in [0..70]];
  • Mathematica
    Table[n + Floor[n/3] (-1)^Mod[n, 3], {n, 0, 70}]
  • Sage
    [n+floor(n/3)*(-1)^mod(n,3) for n in (0..70)]
    

Formula

G.f.: x*(1 + 2*x + 4*x^2 + x^3 + 2*x^4) / ((1 - x)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-3) - a(n-6).
a(3*k) = 4*k;
a(3*k+1) = 2*k+1, hence a(3*k+1) = a(3*k)/2 + 1;
a(3*k+2) = 4*k+2, hence a(3*k+2) = 2*a(3*k+1) = a(3*k) + 2.
Sum_{i=0..n} a(i) = A008738(A032793(n+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 + log(2)/4. - Amiram Eldar, Mar 30 2023