cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265708 a(n) = lcm_{d|n} sigma(d) * Sum_{d|n} 1/sigma(d), where sigma(d) represents the sum of divisors of d (A000203(d)).

Original entry on oeis.org

1, 4, 5, 31, 7, 20, 9, 162, 69, 28, 13, 155, 15, 36, 35, 5127, 19, 276, 21, 217, 45, 52, 25, 810, 223, 60, 703, 279, 31, 140, 33, 15536, 65, 76, 63, 2139, 39, 84, 75, 1134, 43, 180, 45, 403, 483, 100, 49, 25635, 521, 892, 95, 465, 55, 2812, 91, 1458, 105, 124
Offset: 1

Views

Author

Jaroslav Krizek, Dec 24 2015

Keywords

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; sigma(d): {1, 3, 4, 12}; lcm_{d|6} sigma(d) = 12; a(6) = 12/1 + 12/3 + 12/4 + 12/12 = 20.
		

Crossrefs

Programs

  • Magma
    [&+[1/SumOfDivisors(d): d in Divisors(n)] * LCM([SumOfDivisors(d): d in Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := LCM @@ DivisorSigma[1, Divisors[n]] * DivisorSum[n, 1/DivisorSigma[1, #] &]; Array[a, 100] (* Amiram Eldar, Dec 09 2022 *)
  • PARI
    A069934(n) = my(d = divisors(n)); lcm(vector(#d, k, sigma(d[k])));
    A265708(n) = (A069934(n) * sumdiv(n,d,1/sigma(d))); \\ Antti Karttunen, Nov 19 2017

Formula

a(n) = A069934(n) * Sum_{d|n} 1/A000203(d) = A265709(n) * A069934(n) / A265710(n).
Multiplicative with a(p^e) = (1/1 + ..., + 1/sigma(p^(e-1)) + 1/sigma(p^(e))) * lcm{1, ..., sigma(p^(e-1)), sigma(p^(e))}.