A265713 Numbers k such that floor(Sum_{d|k} 1 / sigma(d)) = 3.
110880, 166320, 221760, 277200, 327600, 332640, 360360, 388080, 393120, 415800, 443520, 471240, 480480, 491400, 498960, 526680, 540540, 554400, 556920, 582120, 589680, 600600, 622440, 637560, 655200, 665280, 693000, 720720, 776160, 786240, 803880, 831600
Offset: 1
Keywords
Examples
110880 is a term because floor(Sum_{d|110880} 1/sigma(d)) = floor(22333/7440) = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n: n in [1..1000000] | Floor(&+[1/SumOfDivisors(d): d in Divisors(n)]) eq 3]
-
Mathematica
Select[Range[10^5, 9*10^5], Floor[Sum[1/DivisorSigma[1, d], {d, Divisors@ #}]] == 3 &] (* Michael De Vlieger, Dec 31 2015 *)
-
PARI
isok(n) = floor(sumdiv(n, d, 1/sigma(d))) == 3; \\ Michel Marcus, Dec 27 2015
Comments