cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265713 Numbers k such that floor(Sum_{d|k} 1 / sigma(d)) = 3.

Original entry on oeis.org

110880, 166320, 221760, 277200, 327600, 332640, 360360, 388080, 393120, 415800, 443520, 471240, 480480, 491400, 498960, 526680, 540540, 554400, 556920, 582120, 589680, 600600, 622440, 637560, 655200, 665280, 693000, 720720, 776160, 786240, 803880, 831600
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2015

Keywords

Comments

Numbers k such that A265710(k) = floor(A265708(k) / A069934(k)) = floor(A265709(k) / A265710(k)) = 3.
See A265714(n) = the smallest number k such that floor(Sum_{d|k} 1/sigma(d)) = n.

Examples

			110880 is a term because floor(Sum_{d|110880} 1/sigma(d)) = floor(22333/7440) = 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | Floor(&+[1/SumOfDivisors(d): d in Divisors(n)]) eq 3]
    
  • Mathematica
    Select[Range[10^5, 9*10^5], Floor[Sum[1/DivisorSigma[1, d], {d, Divisors@ #}]] == 3 &] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    isok(n) = floor(sumdiv(n, d, 1/sigma(d))) == 3; \\ Michel Marcus, Dec 27 2015