A265716 a(n) = n IMPL (2*n), where IMPL is the bitwise logical implication.
0, 2, 5, 6, 11, 10, 13, 14, 23, 22, 21, 22, 27, 26, 29, 30, 47, 46, 45, 46, 43, 42, 45, 46, 55, 54, 53, 54, 59, 58, 61, 62, 95, 94, 93, 94, 91, 90, 93, 94, 87, 86, 85, 86, 91, 90, 93, 94, 111, 110, 109, 110, 107, 106, 109, 110, 119, 118, 117, 118, 123, 122
Offset: 0
Examples
. 2*21=42 | 101010 2*6=12 | 1100 . 21 | 10101 6 | 110 . -----------+------- ----------+----- . 21 IMPL 42 | 101010 -> a(21) = 42 6 IMPL 12 | 1101 -> a(6) = 13 .
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..8191 <= 2^13-1
- Eric Weisstein's World of Mathematics, Implies
Programs
-
Haskell
a265716 n = n `bimpl` (2 * n) where bimpl 0 0 = 0 bimpl p q = 2 * bimpl p' q' + if u <= v then 1 else 0 where (p', u) = divMod p 2; (q', v) = divMod q 2
-
Maple
A265716 := n -> Bits:-Implies(n, 2*n): seq(A265716(n), n=0..61); # Peter Luschny, Sep 23 2019
-
Mathematica
IMPL[n_, k_] := If[n == 0, 0, BitOr[2^Length[IntegerDigits[k, 2]]-1-n, k]]; a[n_] := n ~IMPL~ (2n); Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 16 2021 *)
-
PARI
a(n)=bitor(bitneg(n, exponent(n)+1), 2*n) \\ Charles R Greathouse IV, Jan 20 2023
Formula
a(n)= bitor(A003817(n)-n, 2*n) (conjectured). - Bill McEachen, Dec 13 2021
2n <= a(n) <= 3n. - Charles R Greathouse IV, Jan 20 2023
Comments