cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265848 Pascal's triangle, right and left halves interchanged.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 1, 3, 4, 1, 1, 4, 6, 10, 5, 1, 1, 5, 10, 15, 6, 1, 1, 6, 15, 20, 35, 21, 7, 1, 1, 7, 21, 35, 56, 28, 8, 1, 1, 8, 28, 56, 70, 126, 84, 36, 9, 1, 1, 9, 36, 84, 126, 210, 120, 45, 10, 1, 1, 10, 45, 120, 210, 252, 462, 330, 165, 55, 11, 1, 1, 11, 55, 165, 330, 462
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 24 2015

Keywords

Comments

Concatenations of rows of A014413 and A034868.
Alternative mirrored variant: concatenation of A034869 and A014462.

Examples

			.   0:                                1
.   1:                              1   1
.   2:                            1   1   2
.   3:                          3   1   1   3
.   4:                        4   1   1   4   6
.   5:                     10   5   1   1   5   10
.   6:                   15   6   1   1   6   15  20
.   7:                 35   21  7   1   1   7   21   35
.   8:              56   28   8   1   1   8   28  56   70
.   9:           126   84   36  9   1   1   9   36   84   126
.  10:        210   120  45  10   1   1   10  45  120  210  252
.  11:     462   330  165   55  11  1   1   11  55  165   330  462
.  12:  792   495  220   66  12   1   1   12  66  220  495  792   924  .
		

Crossrefs

Cf. A014413, A014462, A034868, A034869, A007318, A001405, A037952, A000079 (row sums), A001142 (row products).

Programs

  • Haskell
    a265848 n k = a265848_tabl !! n !! k
    a265848_row n = a265848_tabl !! n
    a265848_tabl = zipWith (++) ([] : a014413_tabf) a034868_tabf
  • Mathematica
    row[n_] := Binomial[n, Join[Range[Floor[n/2] + 1, n], Range[0, Floor[n/2]]]]; Array[row, 12, 0] // Flatten (* Amiram Eldar, May 13 2025 *)

Formula

T(n,k) = A007318(n, (k + floor((n+2)/2)) mod (n+1)).
T(n,k) = if k <= [(n+1)/2] then A014413(n,k+1) else A034868(n,k-[(n+1)/2]).
T(n,0) = A037952(n) for n > 0.
T(n,n) = A001405(n).