cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265849 First differences of A006751.

Original entry on oeis.org

10, 1100, 2000, 129000, 1112990000, 310198100000, 12900010100000, 1113122099909791900000, 31130009089198002000100000, 132082082098921801009009900000, 11131221131211000108018890978199979090100000, 31131122211299991892189900998999891000999919009909900000
Offset: 1

Views

Author

Altug Alkan, Dec 16 2015

Keywords

Comments

Also first differences of A006715, A001140, A001141, A001143, A001145, A001151, A001154. - Michel Marcus, Dec 16 2015
Note that A005150 has really different first differences characteristic because of its initial term that is 1.

Examples

			a(1) = A006751(2) - A006751(1) = 12 - 2 = 10.
a(2) = A006751(3) - A006751(2) = 1112 - 12 = 1100.
		

Crossrefs

Programs

  • Mathematica
    f[n_, d_: 1] := NestList[Flatten[Reverse /@ Map[Function[k, Through[{First, Length}@ k]], Split@ #]] &, {d}, n - 1]; Differences@ Array[FromDigits@ f[#, 2][[#]] &, {13}] (* Michael De Vlieger, Jan 03 2016, after Zerinvary Lajos at A006751 *)
  • PARI
    dpt(n) = {vd = []; d = digits(n); nbd = 0; old = -1; for (k=1, #d, if (d[k] == old, nbd ++, if (old != -1, vd = concat(vd, nbd); vd = concat(vd, old);); nbd = 1;); old = d[k];); vd = concat(vd, nbd); vd = concat(vd, old); subst(Pol(vd), x, 10);}
    lista(nn, x=2) = {v = vector(nn); v[1] = x; for (n=2, nn, nx = dpt(x); v[n] = nx; x = nx;); vector(nn-1, n, v[n+1] - v[n]);} \\ 2nd param x can any value between 2 and 9 \\ Michel Marcus, Dec 16 2015

Formula

a(n) = A006751(n+1) - A006751(n).
a(n) mod 10^5 = 0, for n > 5.
a(2*n+2) - a(2*n) mod 10^6 = 0, for n > 3.
a(2*n+1) - a(2*n-1) mod 10^7 = 0, for n > 3.