A265892 Array read by ascending antidiagonals: A(n,k) = A265893(A265609(n,k)), with n as row >= 0, k as column >= 0; the number of significant digits counted without trailing zeros in the factorial base representation of rising factorial n^(k) = (n+k-1)!/(n-1)!.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 2, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 3, 2, 3, 2, 2, 1, 1, 0, 1, 2, 3, 2, 2, 3, 1, 1, 1, 0, 1, 3, 1, 2, 3, 1, 2, 2, 1, 1, 0, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 3, 3, 4, 2, 2, 2, 3, 3, 2, 1, 1, 0, 1, 1, 3, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 1, 3, 3, 4, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0
Offset: 0
Examples
The top left corner of the array A265609 with its terms shown in factorial base (A007623) looks like this: 1, 0, 0, 0, 0, 0, 0, 0, 0 1, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000 1, 20, 310, 10000, 110000, 1220000, 14000000, 160000000, 1830000000 1, 21, 1100, 13300, 220000, 3000000, 36000000, 452000000, 5500000000 1, 100, 1300, 24000, 411000, 6000000, 82000000, 1100000000, 13300000000 1, 101, 2110, 41000, 1000000, 13000000, 174000000, 2374000000, 30360000000 - Counting such digits for each term, but without the trailing zeros gives us the top left corner of this array: - The top left corner of the array: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1 1, 1, 2, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2 1, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 1, 2, 3, 4, 3 1, 1, 2, 2, 3, 1, 2, 2, 3, 4, 3, 1, 2, 3, 4, 2, 3, 2, 3, 4, 1, 2, 3, 3, 4 1, 3, 3, 2, 1, 2, 3, 4, 4, 4, 3, 4, 2, 3, 3, 4, 3, 4, 3, 3, 4, 2, 4, 5, 4 1, 2, 1, 1, 2, 3, 4, 3, 3, 2, 3, 2, 4, 5, 4, 3, 4, 3, 3, 4, 5, 3, 4, 3, 4 1, 3, 2, 4, 3, 4, 3, 4, 2, 3, 4, 5, 4, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 3 1, 2, 3, 2, 3, 4, 3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5, 5, 4, 5, 4, 5, 3, 4 1, 3, 3, 4, 4, 4, 3, 4, 4, 5, 4, 3, 3, 5, 6, 6, 5, 6, 5, 6, 5, 6, 4, 5, 6 1, 1, 3, 3, 3, 2, 3, 3, 4, 4, 5, 3, 4, 5, 5, 4, 5, 4, 5, 4, 5, 6, 4, 5, 4 1, 3, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 4, 5, 6, 6, 5, 6, 5, 7, 6, 5, 5, 5, 5 1, 2, 3, 2, 4, 3, 4, 4, 4, 4, 5, 5, 6, 5, 5, 4, 6, 5, 6, 5, 4, 4, 4, 5, 6 1, 3, 1, 2, 3, 4, 5, 4, 3, 4, 4, 5, 5, 7, 6, 7, 6, 7, 5, 6, 7, 5, 4, 5, 6 1, 2, 4, 3, 5, 4, 3, 5, 6, 6, 5, 6, 6, 5, 6, 5, 6, 4, 5, 6, 4, 4, 6, 7, 8 1, 3, 3, 5, 4, 5, 5, 6, 5, 6, 5, 7, 6, 7, 6, 7, 4, 5, 6, 8, 5, 6, 7, 8, 6 1, 1, 3, 3, 4, 3, 5, 4, 5, 4, 6, 5, 6, 5, 6, 6, 7, 6, 7, 4, 5, 6, 7, 5, 6 ...
Comments