A265939 Central terms of triangle A102363.
1, 5, 21, 86, 349, 1410, 5682, 22860, 91869, 368906, 1480486, 5938740, 23813746, 95462996, 382594884, 1533053976, 6141910749, 24603000666, 98541647454, 394644228516, 1580344177254, 6327940829436, 25336229584764, 101436400902696, 406088663224434, 1625644557045060, 6507440174581692, 26048128051398920
Offset: 0
Keywords
Examples
Triangle A102363 begins: 1; 2, 3; 4, 5, 7; 8, 9, 12, 15; 16, 17, 21, 27, 31; 32, 33, 38, 48, 58, 63; 64, 65, 71, 86, 106, 121, 127; 128, 129, 136, 157, 192, 227, 248, 255; 256, 257, 265, 293, 349, 419, 475, 503, 511, 512; ... where the terms in this sequence form the central terms in the above triangle. RELATED SERIES. Let G(x) be the g.f. of triangle A102363 in flattened form: G(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 7*x^5 + 8*x^6 + 9*x^7 + 12*x^8 + 15*x^9 + 16*x^10 + 17*x^11 + 21*x^12 + 27*x^13 + 31*x^14 + 32*x^15 +... where G(x) can be written G(x) = (1+x) + x*(1+x)^2 + x^2*(1+x)^2 + x^3*(1+x)^3 + x^4*(1+x)^3 + x^5*(1+x)^3 + x^6*(1+x)^4 + x^7*(1+x)^4 + x^8*(1+x)^4 + x^9*(1+x)^4 + x^10*(1+x)^5 + x^11*(1+x)^5 + x^12*(1+x)^5 + x^13*(1+x)^5 + x^14*(1+x)^5 + x^15*(1+x)^6 +... then the terms in this sequence form the coefficients of x^(2*n*(n+1)) in G(x) for n>=0. Note that the coefficient of x^(n*(n+1)/2) in G(x) equals 2^n for n>=0.
Crossrefs
Cf. A102363.
Programs
-
Mathematica
Table[(3*4^n - Binomial[2*n, n])/2, {n, 0, 30}] (* Vaclav Kotesovec, Feb 21 2016 *)
-
PARI
{tr(n) = ceil( (sqrt(8*n+9)-1)/2 )} {a(n) = my(S, N=2*n*(n+1)); S = sum(m=0,N, x^m * (1+x +x*O(x^N))^tr(m) ); polcoeff(S, N)} for(n=0,30, print1(a(n),", "))
-
PARI
{a(n) = polcoeff( (3 - sqrt(1-4*x +x*O(x^n))) / (2*(1-4*x)) ,n)} for(n=0,30, print1(a(n),", "))
-
Python
from math import comb def A265939(n): return (3<<(m:=n<<1))-comb(m,n)>>1 # Chai Wah Wu, Jun 07 2025
Formula
G.f.: (3 - sqrt(1-4*x)) / (2*(1-4*x)).
a(n) = (3*4^n - binomial(2*n, n))/2. - Vaclav Kotesovec, Feb 21 2016
a(n) = the coefficient of x^(2*n*(n+1)) in Sum_{n>=0} x^n * (1+x)^tr(n) = Sum_{n>=0} A102363(n)*x^n, where tr(n) = A002024(n+1) = floor(sqrt(2*n+1) + 1/2).
E.g.f.: (3*exp(4*x) - exp(2*x)*BesselI(0,2*x))/2. - Stefano Spezia, Jun 07 2025
Comments