A265976 Expansion of Product_{k>=1} 1/(1 - 5*k*x^k).
1, 5, 35, 190, 1070, 5525, 29080, 147485, 752790, 3789170, 19105800, 95794930, 480650335, 2406018490, 12047084370, 60264282575, 301493182380, 1507758356660, 7540528037090, 37705593514220, 188545393000350, 942756783659980, 4713958620697385, 23570092258449540
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 5^n, b(n, i-1) +i*5*b(n-i, min(n-i, i))) end: a:= n-> b(n$2): seq(a(n), n=0..32); # Alois P. Heinz, Aug 23 2019
-
Mathematica
nmax=40; CoefficientList[Series[Product[1/(1-5*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ c * 5^n, where c = Product_{m>=2} 1/(1 - m/5^(m-1)) = 1.977268427518901757865749340705853730491796767544158844539130847296...