A266088 Alternating sum of 12-gonal (or dodecagonal) numbers.
0, -1, 11, -22, 42, -63, 93, -124, 164, -205, 255, -306, 366, -427, 497, -568, 648, -729, 819, -910, 1010, -1111, 1221, -1332, 1452, -1573, 1703, -1834, 1974, -2115, 2265, -2416, 2576, -2737, 2907, -3078, 3258, -3439, 3629, -3820, 4020, -4221, 4431, -4642
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- OEIS Wiki, Figurate numbers
- Index entries for linear recurrences with constant coefficients, signature (-2,0,2,1).
Programs
-
Magma
[1+(-1)^n*(5*n^2+n-2)/2: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
-
Mathematica
Table[1 + (-1)^n (5 n^2 + n - 2)/2, {n, 0, 43}] CoefficientList[Series[-x (1 - 9 x)/((1 - x) (1 + x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
-
PARI
x='x+O('x^100); concat(0, Vec(-x*(1-9*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015
Formula
G.f.: -x*(1 - 9*x)/((1 - x)*(1 + x)^3).
a(n) = 1 + (-1)^n*(5*n^2 + n - 2)/2.
a(n) = Sum_{k = 0..n} (-1)^k*A051624(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.
Comments