A266164 Primes p such that phi(p) = phi(p-2) + phi(p-1); Phibonacci primes.
3, 5, 7, 11, 17, 23, 37, 41, 47, 101, 137, 233, 257, 857, 1297, 1601, 2017, 4337, 14401, 16097, 30497, 62801, 65537, 77617, 686737, 18800897, 255080417, 12885295097, 12918324737, 96052225601, 516392008697, 7026644072737
Offset: 1
Examples
17 is in this sequence because phi(17) = phi(15) + phi(16); 16 = 8 + 8.
Programs
-
Magma
[n: n in [3..5*10^7] | IsPrime(n) and EulerPhi(n) eq EulerPhi(n-2)+ EulerPhi(n-1)]
-
Maple
select(t -> isprime(t) and t-1 = numtheory:-phi(t-1) + numtheory:-phi(t-2), [seq(i,i=3..10^6,2)]); # Robert Israel, Dec 22 2015
-
Mathematica
Select[Prime[Range[56000]],EulerPhi[#]==EulerPhi[#-2]+EulerPhi[#-1]&] (* The program generates the first 26 terms of the sequence. *) (* Harvey P. Dale, Aug 22 2025 *)
Comments