A266181 Numbers k such that k == d_1 (mod 2), k == d_2 (mod 3), k == d_3 (mod 4) etc., where d_1 d_2 d_3 ... is the decimal expansion of k.
1, 11311, 1032327, 1210565, 11121217, 101033565, 111214177, 113411719, 121254557, 123254387, 10333633323, 12105652565, 11121314781937
Offset: 1
Examples
11311 == 1 (mod 2), 11311 == 1 (mod 3), 11311 == 3 (mod 4), 11311 == 1 (mod 5), 11311 == 1 (mod 6).
Crossrefs
Cf. A131835.
Programs
-
Mathematica
Select[Range@ 2000000, First@ Union@ Function[k, MapIndexed[Mod[k, First@ #2 + 1] == #1 &, IntegerDigits@ k]]@ # &] (* Michael De Vlieger, Dec 30 2015 *)
-
PARI
isok(n) = {my(d = digits(n)); for (i=1, #d, if (n % (i+1) != d[i], return (0));); return (1);} \\ Michel Marcus, Dec 30 2015
-
Python
for b in range (3,11): for i in range (10**(b-2), 13*10**(b-3)): si,k,kk=str(i),0,i for j in range(1,b): if int(si[len(str(i))-j])==kk%(b+1-j): k=k+1 if k==len(str(i)): print (i)
-
Python
def ok(n): return all(n%i == di for i, di in enumerate(map(int, str(n)), 2)) # Michael S. Branicky, Jan 21 2025
Extensions
a(6)-a(12) from Michel Marcus, Dec 30 2015
a(13) from Hiroaki Yamanouchi, Jan 12 2016
Comments