cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266205 a(n) = G_n(6), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

6, 29, 257, 3125, 46655, 98039, 187243, 332147, 555551, 885775, 1357259, 2011162, 2895965, 4068068, 5592391, 7542974, 10003577, 13068280, 16842083, 21441506, 26995189, 33644492, 41544095, 50862597, 61783119, 74503901, 89238903, 106218405, 125689607, 147917229
Offset: 0

Views

Author

Natan Arie Consigli, Jan 23 2016

Keywords

Examples

			G_1(6) = B_2(6) - 1 = B_2(2^2 + 2) - 1 = 3^3 + 3 - 1 = 29;
G_2(6) = B_3(G_1(6)) - 1 = B_3(3^3 + 2) - 1 =  4^4 + 2 - 1 = 257;
G_3(6) = B_4(G_2(6)) - 1 = 5^5 + 1 - 1 = 3125;
G_4(6) = B_5(G_3(6)) - 1 = 6^6 - 1 = 46655;
G_5(6) = B_6(G_4(6)) - 1 = 5*7^5 + 5*7^4 + 5*7^3 + 5*7^2 + 5*7 + 5 - 1 = 98039.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A059936: G_5(n), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 6, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "););} \\ Michel Marcus, Feb 22 2016