cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A266201 Goodstein numbers: a(n) = G_n(n), where G is the Goodstein function.

Original entry on oeis.org

0, 0, 1, 2, 83, 1197, 187243, 37665879, 20000000211, 855935016215, 44580503598539, 2120126221988686, 155568095557812625, 6568408355712901455, 295147905179358418247, 14063084452070776884879
Offset: 0

Views

Author

Natan Arie Consigli, Jan 22 2016

Keywords

Comments

To write an integer n in base-k hereditary representation, write n in ordinary base-k representation, and then do the same recursively for all exponents which are greater than k.
For example, the hereditary representation of 132132 in base-2 is:
132132 = 2^17 + 2^10 + 2^5 + 2^2
= 2^(2^4 + 1) + 2^(2^3 + 2) + 2^(2^2 + 1) + 2^2
= 2^(2^(2^2) + 1) + 2^(2^(2+1) + 2) + 2^(2^2 + 1) + 2^2.
Define B_k(n) to be the function that substitutes k+1 for all the bases of the base-k hereditary representation of n.
E.g., B_2(101) = B_2(2^(2^2 + 2) + 2^(2^2 + 1) + 2^2 + 1) = 3^(3^3 + 3) + 3^(3^3 + 1) + 3^3 + 1 = 228767924549638.
(Sometimes B_k(n) is referred to as n "bumped" from base k.)
The Goodstein function is defined as: G_k(n) = B_{k+1}(G_{k-1}(n)) - 1 with G_0(n) = n, i.e., iteration of bumping the number to the next larger base and subtracting one; see example section for instances.
Goodstein's theorem says that for any nonnegative n, the sequence G_k(n) eventually stabilizes and then decreases by 1 in each step until it reaches 0. (The subsequent values of G_k(n) < 0 are not part of the sequence.)
Named after the English mathematician Reuben Louis Goodstein (1912-1985). - Amiram Eldar, Jun 19 2021

Examples

			Compute a(5) = G_5(5):
G_0(5) = 5;
G_1(5) = B_2(G_0(5))-1 = B_2(2^2+1)-1 = (3^3+1)-1 = 27 = 3^3;
G_2(5) = B_3(G_1(5))-1 = B_3(3^3)-1 = 4^4-1 = 255 = 3*4^3+3*4^2+3*4+3;
G_3(5) = B_4(G_2(5))-1 = B_4(3*4^3+3*4^2+3*4+3)-1 = 467;
G_4(5) = B_5(G_3(5))-1 = B_5(3*5^3+3*5^2+3*5+2)-1 = 775;
G_5(5) = B_6(G_4(5))-1 = B_6(3*6^3+3*6^2+3*6+1)-1 = 1197.
		

Crossrefs

Cf. Goodstein sequences: A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A215409: G_n(3); A056193: G_n(4); A266204: G_n(5); A266205: G_n(6); A222117: G_n(15); A059933: G_n(16); A211378: G_n(19).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A266203: a(n) = k such that g_k(n)=0;
Bumping Sequences: A222112: B_2(n);
Other sequences: A222113.

Programs

  • PARI
    (B(n,b)=sum(i=1,#n=digits(n,b),n[i]*(b+1)^if(#nA266201(n)=for(k=1,n,n=B(n,k+1)-1);n \\ M. F. Hasler, Feb 12 2017

Extensions

Edited by M. F. Hasler, Feb 12 2017
Incorrect a(16) deleted (the correct value is ~ 2.77*10^861) by M. F. Hasler, Feb 19 2017

A059933 Goodstein sequence starting with 16: to calculate a(n+1), write a(n) in the hereditary representation in base n+2, then bump the base to n+3, then subtract 1.

Original entry on oeis.org

16, 7625597484986, 50973998591214355139406377, 53793641718868912174424175024032593379100060, 19916489515870532960258562190639398471599239042185934648024761145811, 5103708485122940631839901111036829791435007685667303872450435153015345686896530517814322070729709
Offset: 0

Views

Author

Henry Bottomley, Feb 12 2001

Keywords

Comments

See A266201 for definitions of and key links for hereditary representation and Goodstein sequences.
Goodstein's theorem shows that the Goodstein sequence G_n(k) eventually stabilizes and then decreases by 1 at each step until it reaches 0. Thereafter the values of G_n(k) < 0 are not part of the sequence. By Goodstein's theorem we conclude that G_n(k) is a finite sequence.
In this case when a(0) = G_0(16) = 16, there seems little possibility of describing how incredibly large n must be for a(n) to reach 0.

Examples

			a(0) = 16 = 2^(2^2) so a(1) = 3^(3^3)-1 = 7625597484986.
So a(1) = 2*3^(2*3^2 + 2*3 + 2) + 2*3^(2*3^2 + 2*3 + 1) + 2*3^(2*3^2 + 2*3) + 2*3^(2*3^2 + 1*3 + 2) + 2*3^(2*3^2 + 1*3 + 1) + 2*3^(2*3^2 + 1*3) + 2*3^(2*3^2 + 2) + 2*3^(2*3^2 + 1) + 2*3^(2*3^2) + 2*3^(3^2 + 2*3 + 2) + 2*3^(3^2 + 2*3 + 1) + 2*3^(3^2 + 2*3) + 2*3^(3^2 + 1*3 + 2) + 2*3^(3^2 + 1*3 + 1) + 2*3^(3^2 + 1*3) + 2*3^(3^2 + 2) + 2*3^(3^2 + 1) + 2*3^(3^2) + 2*3^(2*3 + 2) + 2*3^(2*3 + 1) + 2*3^(2*3) + 2*3^(1*3 + 2) + 2*3^(1*3 + 1) + 2*3^(1*3) + 2*3^(2) + 2*3^(1) + 2,
leading to a(2) = 2*4^(2*4^2 + 2*4 + 2) + 2*4^(2*4^2 + 2*4 + 1) + 2*4^(2*4^2 + 2*4) + 2*4^(2*4^2 + 1*4 + 2) + 2*4^(2*4^2 + 1*4 + 1) + 2*4^(2*4^2 + 1*4) + 2*4^(2*4^2 + 2) + 2*4^(2*4^2 + 1) + 2*4^(2*4^2) + 2*4^(4^2 + 2*4 + 2) + 2*4^(4^2 + 2*4 + 1) + 2*4^(4^2 + 2*4) + 2*4^(4^2 + 1*4 + 2) + 2*4^(4^2 + 1*4 + 1) + 2*4^(4^2 + 1*4) + 2*4^(4^2 + 2) + 2*4^(4^2 + 1) + 2*4^(4^2) + 2*4^(2*4 + 2) + 2*4^(2*4 + 1) + 2*4^(2*4) + 2*4^(1*4 + 2) + 2*4^(1*4 + 1) + 2*4^(1*4) + 2*4^(2) + 2*4^(1) + 1 = 2*(4^32 + 4^16 + 1)*(4^8 + 4^4 + 1)*(4^2 + 4*1)-1 = 50973998591214355139406377.
		

Crossrefs

Cf. A266201: G_n(n).
Cf. A056193: G_n(4), A056004: G_1(n), A057650 G_2(n), A056041.
Cf. A215409: G_n(3), A222117: G_n(15), A211378: G_n(19), A266204: G_n(5), A266205: G_n(6).

Programs

  • Haskell
    -- See Link
    
  • PARI
    bump(a, n) = {if (a < n, return (a)); my(pd = Pol(digits(a, n)));  my(de = vector(poldegree(pd)+1, k, k--; polcoeff(pd, k))); my(bde = vector(#de, k, k--; bump(k, n))); my(q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^bde[k+1], 0))); return(subst(q, x, n+1)); }
    lista(nn) = {print1(a = 16, ", "); for (n=2, nn, a = bump(a, n)-1; print1(a, ", "); ); } \\ Michel Marcus, Feb 28 2016
    
  • PARI
    (B(n,b)=sum(i=1,#n=digits(n,b),n[i]*(b+1)^if(#n1,B(a,n)-1,16)) \\ M. F. Hasler, Feb 12 2017

Formula

a(n) = G_n(16), where G is the function defined in A266201.

Extensions

Definition corrected by N. J. A. Sloane, Mar 06 2006
Missing a(5) inserted and wrong a(7) replaced by Reinhard Zumkeller, Feb 13 2013
Revised by Natan Arie Consigli, Jan 23 2016
Offset changed to 0 by Nicholas Matteo, Aug 21 2019

A266204 a(n) = G_n(5), where G_n(k) is the Goodstein function defined in A266201.

Original entry on oeis.org

5, 27, 255, 467, 775, 1197, 1751, 2454, 3325, 4382, 5643, 7126, 8849, 10830, 13087, 15637, 18499, 21691, 25231, 29137, 33427, 38119, 43231, 48781, 54787, 61267, 68239, 75721, 83731, 92287, 101407, 111108, 121409, 132328, 143883, 156092, 168973, 182544, 196823
Offset: 0

Views

Author

Natan Arie Consigli, Jan 22 2016

Keywords

Examples

			G_0(5) = 5;
G_1(5) = B_2(5) - 1 = B_2(2^2 + 1) - 1 = 27;
G_2(5) = B_3(3^3) - 1 = 4^4 - 1 = 255;
G_3(5) = B_4(3*4^3 + 3*4^2 + 3*4 + 3) - 1 = 3*5^3 + 3*5^2 + 3*5 + 3 - 1 = 467.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A059936: G_5(n), A266201: G_n(n).

Programs

  • PARI
    bump(a, n) = {if (a < n, return (a)); my(pd = Pol(digits(a, n)));  my(de = vector(poldegree(pd)+1, k, k--; polcoeff(pd, k))); my(bde = vector(#de, k, k--; bump(k, n))); my(q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^bde[k+1], 0))); return(subst(q, x, n+1)); }
    lista(nn) = {print1(a = 5, ", "); for (n=2, nn, a = bump(a, n)-1; print1(a, ", "); ); } \\ Michel Marcus, Feb 28 2016

A056004 Initial step in Goodstein sequences: write n in hereditary representation base 2, bump to base 3, then subtract 1.

Original entry on oeis.org

0, 2, 3, 26, 27, 29, 30, 80, 81, 83, 84, 107, 108, 110, 111, 7625597484986, 7625597484987, 7625597484989, 7625597484990, 7625597485013, 7625597485014, 7625597485016, 7625597485017, 7625597485067, 7625597485068, 7625597485070, 7625597485071, 7625597485094
Offset: 1

Views

Author

Henry Bottomley, Aug 04 2000

Keywords

Comments

To write an integer n in base-k hereditary representation, write n in ordinary base-k representation, and then do the same recursively for all exponents which are greater than k: e.g., 2^18 = 2^(2^4 + 2) = 2^(2^(2^2) + 2). "Bump to base 3" means to replace all the 2's in that representation by 3. - M. F. Hasler, Feb 19 2017

Examples

			a(18)=7625597484989 since 18=2^(2^2)+2^1 which when bumped from 2 to 3 becomes 3^(3^3)+3^1=76255974849890 and when 1 is subtracted gives 7625597484989.
		

Crossrefs

Using G_k to denote the k-th step, this is the first in the following list: A056004: G_1(n), A057650: G_2(n), A059934: G_3(n), A059935: G_4(n), A059936: G_5(n); A266201: G_n(n); A056041.
Cf. A215409: G_n(3), A056193: G_n(4), A266204: G_n(5), A266205: G_n(6), A222117: G_n(15), A059933: G_n(16), A211378: G_n(19).
See A222112 for an alternate version.

Programs

  • Haskell
    -- See Link
    
  • PARI
    A056004(n)=sum(i=1,#n=binary(n),if(n[i],3^if(#n-i<2,#n-i,A056004(#n-i)+1)))-1 \\ See A266201 for more general code. - M. F. Hasler, Feb 19 2017

Extensions

Edited by M. F. Hasler, Feb 19 2017

A271554 a(n) = G_n(7), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

7, 30, 259, 3127, 46657, 823543, 16777215, 37665879, 77777775, 150051213, 273624711, 475842915, 794655639, 1281445305, 2004318063, 3051893870, 4537630813, 6604718946, 9431578931, 13238000758, 18291957825, 24917131658, 33501182551, 44504801406, 58471578053, 76038721330
Offset: 0

Views

Author

Natan Arie Consigli, Apr 10 2016

Keywords

Examples

			G_1(7) = B_2(7) - 1 = B[2](2^2 + 2 + 1) - 1 = 3^3 + 3 + 1 - 1 = 30;
G_2(7) = B_3(G_1(7)) - 1 = B[3](3^3 + 3) - 1 =  4^4 + 4 - 1 = 259;
G_3(7) = B_4(G_2(7)) - 1 = 5^5 + 3 - 1 = 3127;
G_4(7) = B_5(G_3(7)) - 1 = 6^6 + 2 - 1 = 46657;
G_5(7) = B_6(G_4(7)) - 1 = 7^7 + 1 - 1 = 823543;
G_6(7) = B_7(G_5(7)) - 1 = 8^8 - 1 = 16777215;
G_7(7) = B_8(G_6(7)) - 1 = 7*9^7 + 7*9^6 + 7*9^5 + 7*9^4 + 7*9^3 + 7*9^2 + 7*9 + 7 - 1 = 37665879.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 7, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A271555 a(n) = G_n(8), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

8, 80, 553, 6310, 93395, 1647195, 33554571, 774841151, 20000000211, 570623341475, 17832200896811, 605750213184854, 22224013651116433, 875787780761719208, 36893488147419103751, 1654480523772673528938, 78692816150593075151501, 3956839311320627178248684
Offset: 0

Views

Author

Natan Arie Consigli, Apr 10 2016

Keywords

Examples

			G_1(8) = B_2(8)-1 = B_2(2^(2+1))-1 = 3^(3+1)-1 = 80;
G_2(8) = B_3(2*3^3+2*3^2+2*3+2)-1 = 2*4^4+2*4^2+2*4+2-1 = 553;
G_3(8) = B_4(2*4^4+2*4^2+2*4+1)-1 = 2*5^5+2*5^2+2*5+1-1 = 6310;
G_4(8) = B_5(2*5^5+2*5^2+2*5)-1 = 2*6^6+2*6^2+2*6-1 = 93395;
G_5(8) = B_6(2*6^6+2*6^2+6+5)-1 = 2*7^7+2*7^2+7+5-1 = 1647195;
G_6(8) = B_7(2*7^7+2*7^2+7+4)-1 = 2*8^8+2*8^2+8+4-1 = 33554571;
G_7(8) = B_8(2*8^8+2*8^2+8+3)-1 = 2*9^9+2*9^2+9+3-1 = 774841151.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 8, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

Extensions

a(3) corrected by Nicholas Matteo, Aug 15 2019

A271556 a(n) = G_n(9), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

9, 81, 1023, 9842, 140743, 2471826, 50333399, 1162263921, 30000003325, 855935016215, 26748301350411, 908625319783885, 33336020476682897, 1313681671142588955, 55340232221128667935, 2481720785659010308168, 118039224225889612744771, 5935258966980940767393628
Offset: 0

Views

Author

Natan Arie Consigli, Apr 10 2016

Keywords

Examples

			G_1(9) = B_2(9)-1 = B_2(2^(2+1)+1)-1 = 3^(3+1) + 1-1 = 81;
G_2(9) = B_3(3^(3+1))-1 = 4^(4+1)-1 = 1023;
G_3(9) = B_4(3*4^4 + 3*4^3 + 3*4^2 + 3*4 + 3)-1 = 3*5^5 + 3*5^3 + 3*5^2 + 3*5 + 3-1 = 9842;
G_4(9) = B_5(3*5^5 + 3*5^3 + 3*5^2 + 3*5 + 2)-1 = 3*6^6 + 3*6^3 + 3*6^2 + 3*6 + 2-1 = 140743;
G_5(9) = B_6(3*6^6 + 3*6^3 + 3*6^2 + 3*6 + 1)-1 = 3*7^7 + 3*7^3 + 3*7^2 + 3*7 + 1-1 = 2471826;
G_6(9) = B_7(3*7^7 + 3*7^3 + 3*7^2 + 3*7)-1 = 3*8^8 + 3*8^3 + 3*8^2 + 3*8-1 = 50333399.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 9, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A271557 a(n) = G_n(10), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

10, 83, 1025, 15625, 279935, 4215754, 84073323, 1937434592, 50000555551, 1426559238830, 44580503598539, 1514375534972427, 55560034130686045, 2189469451908364943, 92233720368553350471, 4136201309431691363859, 196732040376482697880697, 9892098278301567958688175
Offset: 0

Views

Author

Natan Arie Consigli, Apr 11 2016

Keywords

Examples

			G_1(10) = B_2(10)-1 = B_2(2^(2+1)+2)-1 = 3^(3+1)+3-1 = 83;
G_2(10) = B_3(3^(3+1)+2)-1 = 4^(4+1)+2-1 = 1025;
G_3(10) = B_4(4^(4+1)+1)-1 = 5^(5+1)+1-1 = 15625;
G_4(10) = B_5(5*5^(5+1))-1 = 6^(6+1)-1= 279935;
G_5(10) = B_6(5*6^6+5*6^5+5*6^4+5*6^3+5*6^2+5*6+5)-1 = 5*7^7+5*7^5+5*7^4+5*7^3+5*7^2+5*7+5-1 = 4215754;
G_6(10) = B_7(5*7^7+5*7^5+5*7^4+5*7^3+5*7^2+5*7+4)-1 = 5*8^8+5*8^5+5*8^4+5*8^3+5*8^2+5*8+4-1 = 84073323;
G_7(10) = B_8(5*8^8+5*8^5+5*8^4+5*8^3+5*8^2+5*8+3)-1 = 5*9^9+5*9^5+5*9^4+5*9^3+5*9^2+5*9+3-1 = 1937434592;
G_8(10) = B_9(5*9^9+5*9^5+5*9^4+5*9^3+5*9^2+5*9+2)-1 = 5*10^10+5*10^5+5*10^4+5*10^3+5*10^2+5*10+2-1 = 50000555551.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 10, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A222112 Initial step in Goodstein sequences: write n-1 in hereditary binary representation, then bump to base 3.

Original entry on oeis.org

0, 1, 3, 4, 27, 28, 30, 31, 81, 82, 84, 85, 108, 109, 111, 112, 7625597484987, 7625597484988, 7625597484990, 7625597484991, 7625597485014, 7625597485015, 7625597485017, 7625597485018, 7625597485068, 7625597485069, 7625597485071, 7625597485072, 7625597485095
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2013

Keywords

Comments

See A056004 for an alternate version.

Examples

			n = 19: 19 - 1 = 18 = 2^4 + 2^1 = 2^2^2 + 2^1
-> a(19) = 3^3^3 + 3^1 = 7625597484990;
n = 20: 20 - 1 = 19 = 2^4 + 2^1 + 2^0 = 2^2^2 + 2^1 + 2^0
-> a(20) = 3^3^3 + 3^1 + 3^0 = 7625597484991;
n = 21: 21 - 1 = 20 = 2^4 + 2^2 = 2^2^2 + 2^2
-> a(21) = 3^3^3 + 3^3 = 7625597485014.
		

References

  • Helmut Schwichtenberg and Stanley S. Wainer, Proofs and Computations, Cambridge University Press, 2012; 4.4.1, page 148ff.

Crossrefs

Cf. A056004: G_1(n), A057650 G_2(n), A056041; A266201: G_n(n);
Cf. A215409: G_n(3), A056193: G_n(4), A266204: G_n(5), A266205: G_n(6), A222117: G_n(15), A059933: G_n(16), A211378: G_n(19).

Programs

  • Haskell
    -- See Link
    
  • PARI
    A222112(n)=sum(i=1, #n=binary(n-1), if(n[i],3^if(#n-i<2, #n-i, A222112(#n-i+1)))) \\ See A266201 for more general code. - M. F. Hasler, Feb 13 2017, edited Feb 19 2017

A271558 a(n) = G_n(11), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

11, 84, 1027, 15627, 279937, 5764801, 134217727, 2749609302, 70077777775, 1997331745490, 62412976762503, 2120126221988686, 77784048573561751, 3065257233947460930, 129127208517971179375, 5790681833207409243109, 275424856527080300658781, 13848937589622201728586799
Offset: 0

Views

Author

Natan Arie Consigli, Apr 11 2016

Keywords

Examples

			G_1(11) = B_2(11)-1 = B_2(2^(2+1)+2+1)-1 = 3^(3+1)+3+1-1 = 84;
G_2(11) = B_3(3^(3+1)+3)-1 = 4^(4+1)+4-1 = 1027;
G_3(11) = B_4(4^(4+1)+3)-1 = 5^(5+1)+3-1 = 15627;
G_4(11) = B_5(5^(5+1)+2)-1 = 6^(6+1)+2-1 = 279937;
G_5(11) = B_6(6^(6+1)+1)-1 = 7^(7+1)+1-1 = 5764801;
G_6(11) = B_7(7^(7+1))-1 = 8^(8+1)-1 = 134217727.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 11, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

Extensions

a(9)-a(13) corrected by Nicholas Matteo, Aug 15 2019
a(14) onwards from Nicholas Matteo, Aug 28 2019
Showing 1-10 of 19 results. Next