cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A057650 Second step in Goodstein sequences, i.e., g(4) if g(2)=n: (first step) write g(2)=n in hereditary representation base 2, bump to base 3, then subtract 1 to produce g(3)=A056004(n), then (second step) write g(3) in hereditary representation base 3, bump to base 4, then subtract 1 to produce g(4).

Original entry on oeis.org

1, 3, 41, 255, 257, 259, 553, 1023, 1025, 1027, 1065, 1279, 1281, 1283, 50973998591214355139406377, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084095
Offset: 2

Views

Author

Henry Bottomley, Oct 13 2000

Keywords

Examples

			a(12)=1065 since with g(2) = 12 = 2^(2+1) + 2^2, we get g(3) = 3^(3+1) + 3^3 - 1 = 107 = 3^(3+1) + 2*3^2 + 2*3 + 2 and g(4) = 4^(4+1) + 2*4^2 + 2*4 + 2 - 1 = 1065.
a(17) = 4^(4^4) - 1, with g(2) = 17 = 2^(2^2) + 1 and g(3) = 3^(3^3).
Similarly a(18) = 4^(4^4) + 1, with g(2) = 18 = 2^(2^2) + 2 and g(3) = 3^(3^3) + 2.
		

Crossrefs

Programs

  • Haskell
    -- See Link

A266201 Goodstein numbers: a(n) = G_n(n), where G is the Goodstein function.

Original entry on oeis.org

0, 0, 1, 2, 83, 1197, 187243, 37665879, 20000000211, 855935016215, 44580503598539, 2120126221988686, 155568095557812625, 6568408355712901455, 295147905179358418247, 14063084452070776884879
Offset: 0

Views

Author

Natan Arie Consigli, Jan 22 2016

Keywords

Comments

To write an integer n in base-k hereditary representation, write n in ordinary base-k representation, and then do the same recursively for all exponents which are greater than k.
For example, the hereditary representation of 132132 in base-2 is:
132132 = 2^17 + 2^10 + 2^5 + 2^2
= 2^(2^4 + 1) + 2^(2^3 + 2) + 2^(2^2 + 1) + 2^2
= 2^(2^(2^2) + 1) + 2^(2^(2+1) + 2) + 2^(2^2 + 1) + 2^2.
Define B_k(n) to be the function that substitutes k+1 for all the bases of the base-k hereditary representation of n.
E.g., B_2(101) = B_2(2^(2^2 + 2) + 2^(2^2 + 1) + 2^2 + 1) = 3^(3^3 + 3) + 3^(3^3 + 1) + 3^3 + 1 = 228767924549638.
(Sometimes B_k(n) is referred to as n "bumped" from base k.)
The Goodstein function is defined as: G_k(n) = B_{k+1}(G_{k-1}(n)) - 1 with G_0(n) = n, i.e., iteration of bumping the number to the next larger base and subtracting one; see example section for instances.
Goodstein's theorem says that for any nonnegative n, the sequence G_k(n) eventually stabilizes and then decreases by 1 in each step until it reaches 0. (The subsequent values of G_k(n) < 0 are not part of the sequence.)
Named after the English mathematician Reuben Louis Goodstein (1912-1985). - Amiram Eldar, Jun 19 2021

Examples

			Compute a(5) = G_5(5):
G_0(5) = 5;
G_1(5) = B_2(G_0(5))-1 = B_2(2^2+1)-1 = (3^3+1)-1 = 27 = 3^3;
G_2(5) = B_3(G_1(5))-1 = B_3(3^3)-1 = 4^4-1 = 255 = 3*4^3+3*4^2+3*4+3;
G_3(5) = B_4(G_2(5))-1 = B_4(3*4^3+3*4^2+3*4+3)-1 = 467;
G_4(5) = B_5(G_3(5))-1 = B_5(3*5^3+3*5^2+3*5+2)-1 = 775;
G_5(5) = B_6(G_4(5))-1 = B_6(3*6^3+3*6^2+3*6+1)-1 = 1197.
		

Crossrefs

Cf. Goodstein sequences: A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A215409: G_n(3); A056193: G_n(4); A266204: G_n(5); A266205: G_n(6); A222117: G_n(15); A059933: G_n(16); A211378: G_n(19).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A266203: a(n) = k such that g_k(n)=0;
Bumping Sequences: A222112: B_2(n);
Other sequences: A222113.

Programs

  • PARI
    (B(n,b)=sum(i=1,#n=digits(n,b),n[i]*(b+1)^if(#nA266201(n)=for(k=1,n,n=B(n,k+1)-1);n \\ M. F. Hasler, Feb 12 2017

Extensions

Edited by M. F. Hasler, Feb 12 2017
Incorrect a(16) deleted (the correct value is ~ 2.77*10^861) by M. F. Hasler, Feb 19 2017

A059933 Goodstein sequence starting with 16: to calculate a(n+1), write a(n) in the hereditary representation in base n+2, then bump the base to n+3, then subtract 1.

Original entry on oeis.org

16, 7625597484986, 50973998591214355139406377, 53793641718868912174424175024032593379100060, 19916489515870532960258562190639398471599239042185934648024761145811, 5103708485122940631839901111036829791435007685667303872450435153015345686896530517814322070729709
Offset: 0

Views

Author

Henry Bottomley, Feb 12 2001

Keywords

Comments

See A266201 for definitions of and key links for hereditary representation and Goodstein sequences.
Goodstein's theorem shows that the Goodstein sequence G_n(k) eventually stabilizes and then decreases by 1 at each step until it reaches 0. Thereafter the values of G_n(k) < 0 are not part of the sequence. By Goodstein's theorem we conclude that G_n(k) is a finite sequence.
In this case when a(0) = G_0(16) = 16, there seems little possibility of describing how incredibly large n must be for a(n) to reach 0.

Examples

			a(0) = 16 = 2^(2^2) so a(1) = 3^(3^3)-1 = 7625597484986.
So a(1) = 2*3^(2*3^2 + 2*3 + 2) + 2*3^(2*3^2 + 2*3 + 1) + 2*3^(2*3^2 + 2*3) + 2*3^(2*3^2 + 1*3 + 2) + 2*3^(2*3^2 + 1*3 + 1) + 2*3^(2*3^2 + 1*3) + 2*3^(2*3^2 + 2) + 2*3^(2*3^2 + 1) + 2*3^(2*3^2) + 2*3^(3^2 + 2*3 + 2) + 2*3^(3^2 + 2*3 + 1) + 2*3^(3^2 + 2*3) + 2*3^(3^2 + 1*3 + 2) + 2*3^(3^2 + 1*3 + 1) + 2*3^(3^2 + 1*3) + 2*3^(3^2 + 2) + 2*3^(3^2 + 1) + 2*3^(3^2) + 2*3^(2*3 + 2) + 2*3^(2*3 + 1) + 2*3^(2*3) + 2*3^(1*3 + 2) + 2*3^(1*3 + 1) + 2*3^(1*3) + 2*3^(2) + 2*3^(1) + 2,
leading to a(2) = 2*4^(2*4^2 + 2*4 + 2) + 2*4^(2*4^2 + 2*4 + 1) + 2*4^(2*4^2 + 2*4) + 2*4^(2*4^2 + 1*4 + 2) + 2*4^(2*4^2 + 1*4 + 1) + 2*4^(2*4^2 + 1*4) + 2*4^(2*4^2 + 2) + 2*4^(2*4^2 + 1) + 2*4^(2*4^2) + 2*4^(4^2 + 2*4 + 2) + 2*4^(4^2 + 2*4 + 1) + 2*4^(4^2 + 2*4) + 2*4^(4^2 + 1*4 + 2) + 2*4^(4^2 + 1*4 + 1) + 2*4^(4^2 + 1*4) + 2*4^(4^2 + 2) + 2*4^(4^2 + 1) + 2*4^(4^2) + 2*4^(2*4 + 2) + 2*4^(2*4 + 1) + 2*4^(2*4) + 2*4^(1*4 + 2) + 2*4^(1*4 + 1) + 2*4^(1*4) + 2*4^(2) + 2*4^(1) + 1 = 2*(4^32 + 4^16 + 1)*(4^8 + 4^4 + 1)*(4^2 + 4*1)-1 = 50973998591214355139406377.
		

Crossrefs

Cf. A266201: G_n(n).
Cf. A056193: G_n(4), A056004: G_1(n), A057650 G_2(n), A056041.
Cf. A215409: G_n(3), A222117: G_n(15), A211378: G_n(19), A266204: G_n(5), A266205: G_n(6).

Programs

  • Haskell
    -- See Link
    
  • PARI
    bump(a, n) = {if (a < n, return (a)); my(pd = Pol(digits(a, n)));  my(de = vector(poldegree(pd)+1, k, k--; polcoeff(pd, k))); my(bde = vector(#de, k, k--; bump(k, n))); my(q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^bde[k+1], 0))); return(subst(q, x, n+1)); }
    lista(nn) = {print1(a = 16, ", "); for (n=2, nn, a = bump(a, n)-1; print1(a, ", "); ); } \\ Michel Marcus, Feb 28 2016
    
  • PARI
    (B(n,b)=sum(i=1,#n=digits(n,b),n[i]*(b+1)^if(#n1,B(a,n)-1,16)) \\ M. F. Hasler, Feb 12 2017

Formula

a(n) = G_n(16), where G is the function defined in A266201.

Extensions

Definition corrected by N. J. A. Sloane, Mar 06 2006
Missing a(5) inserted and wrong a(7) replaced by Reinhard Zumkeller, Feb 13 2013
Revised by Natan Arie Consigli, Jan 23 2016
Offset changed to 0 by Nicholas Matteo, Aug 21 2019

A056193 Goodstein sequence starting with 4: to calculate a(n+1), write a(n) in the hereditary representation in base n+2, then bump the base to n+3, then subtract 1.

Original entry on oeis.org

4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, 401, 458, 519, 584, 653, 726, 803, 884, 969, 1058, 1151, 1222, 1295, 1370, 1447, 1526, 1607, 1690, 1775, 1862, 1951, 2042, 2135, 2230, 2327, 2426, 2527, 2630, 2735, 2842, 2951, 3062, 3175, 3290, 3407
Offset: 0

Views

Author

Henry Bottomley, Aug 02 2000

Keywords

Comments

Goodstein's theorem shows that such a sequence converges to zero for any starting value [e.g. if a(0)=1 then a(1)=0; if a(0)=2 then a(3)=0; and if a(0)=3 then a(5)=0]. With a(0)=4 we have a(3*2^(3*2^27 + 27) - 3)=0, which is well beyond the 10^(10^8)-th term.
The second half of such sequences is declining and the previous quarter is stable.
The resulting sequence 0,1,3,5,3*2^402653211 - 3, ... (see Comments in A056041) grows too rapidly to have its own entry.

Examples

			a(0) = 4 = 2^2,
a(1) = 3^3 - 1 = 26 = 2*3^2 + 2*3 + 2,
a(2) = 2*4^2 + 2*4 + 2 - 1 = 41 = 2*4^2 + 2*4 + 1,
a(3) = 2*5^2 + 2*5 + 1 - 1 = 60 = 2*5^2 + 2*5,
a(4) = 2*6^2 + 2*6 - 1 = 83 = 2*6^2 + 6 + 5,
a(5) = 2*7^2 + 7 + 5 - 1 = 109 etc.
		

Crossrefs

Programs

  • Haskell
    See Zumkeller link
    
  • PARI
    lista(nn) = {print1(a = 4, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "););} \\ Michel Marcus, Feb 22 2016

Extensions

Edited by N. J. A. Sloane, Mar 06 2006
Offset changed to 0 by Nicholas Matteo, Sep 04 2019

A215409 The Goodstein sequence G_n(3).

Original entry on oeis.org

3, 3, 3, 2, 1, 0
Offset: 0

Views

Author

Jonathan Sondow, Aug 10 2012

Keywords

Comments

G_0(m) = m. To get the 2nd term, write m in hereditary base 2 notation (see links), change all the 2s to 3s, and then subtract 1 from the result. To get the 3rd term, write the 2nd term in hereditary base 3 notation, change all 3s to 4s, and subtract 1 again. Continue until the result is zero (by Goodstein's Theorem), when the sequence terminates.
Decimal expansion of 33321/100000. - Natan Arie Consigli, Jan 23 2015

Examples

			a(0) = 3 = 2^1 + 1;
a(1) = 3^1 + 1 - 1 = 3^1 = 3;
a(2) = 4^1 - 1 = 3;
a(3) = 3 - 1 = 2;
a(4) = 2 - 1 = 1;
a(5) = 1 - 1 = 0.
		

Crossrefs

Programs

  • Haskell
    -- See Link
    
  • Mathematica
    PadRight[CoefficientList[Series[3 + 3 x + 3 x^2 + 2 x^3 + x^4, {x, 0, 4}], x], 6] (* Michael De Vlieger, Dec 12 2017 *)
  • PARI
    B(n, b)=sum(i=1, #n=digits(n, b), n[i]*(b+1)^if(#nIain Fox, Dec 13 2017
    
  • PARI
    first(n) = my(res = vector(n)); res[1] = res[2] = res[3] = 3; res[4] = 2; res[5] = 1; res; \\ Iain Fox, Dec 12 2017
    
  • PARI
    first(n) = Vec(3 + 3*x + 3*x^2 + 2*x^3 + x^4 + O(x^n)) \\ Iain Fox, Dec 12 2017
    
  • PARI
    a(n) = floor(2 - (4/Pi)*atan(n-3)) \\ Iain Fox, Dec 12 2017

Formula

a(0) = a(1) = a(2) = 3; a(3) = 2; a(4) = 1; a(n) = 0, n > 4;
From Iain Fox, Dec 12 2017: (Start)
G.f.: 3 + 3*x + 3*x^2 + 2*x^3 + x^4.
E.g.f.: 3 + 3*x + (3/2)*x^2 + (1/3)*x^3 + (1/24)*x^4.
a(n) = floor(2 - (4/Pi)*arctan(n-3)), n >= 0.
(End)

Extensions

Corrected by Natan Arie Consigli, Jan 23 2015

A059936 Fifth step in Goodstein sequences, i.e., g(7) if g(2)=n: write g(6)=A059935(n) in hereditary representation base 6, bump to base 7, then subtract 1 to produce g(7).

Original entry on oeis.org

0, 109, 1197, 98039, 823543, 1647195, 2471826, 4215754, 5764801, 5764910, 5765998, 5862840, 6588344, 5103708485122940631839901111036829791435007685667303872450435153015345686896530517814322070729709
Offset: 3

Views

Author

Henry Bottomley, Feb 12 2001

Keywords

Comments

a(17) = 4.587...*10^1014, a(18) = 1.505...*10^82854, and 3.759...*10^695974 = a(19) < a(20) < ... < a(31) = a(19) + 6588344. - Pontus von Brömssen, Sep 20 2020

Examples

			a(12) = 5764910 since with g(2) = 12 = 2^(2 + 1) + 2^2, we get g(3) = 3^(3 + 1) + 3^3-1 = 107 = 3^(3 + 1) + 2*3^2 + 2*3 + 2, g(4) = 4^(4 + 1) + 2*4^2 + 2*4 + 1 = 1065, g(5) = 5^(5 + 1) + 2*5^2 + 2*5 = 15685, g(6) = 6^(6 + 1) + 2*6^2 + 6 + 5 = 280019 and g(7) = 7^(7 + 1) + 2*7^2 + 7 + 4 = 5764910.
		

Crossrefs

Programs

  • Haskell
    -- See Link
    
  • Python
    from sympy.ntheory.factor_ import digits
    def bump(n,b):
      s=digits(n,b)[1:]
      l=len(s)
      return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i])
    def A059936(n):
      for i in range(2,7):
        n=bump(n,i)-1
      return n # Pontus von Brömssen, Sep 19 2020

Extensions

a(16) corrected by Pontus von Brömssen, Sep 18 2020

A059934 Third step in Goodstein sequences, i.e., g(5) if g(2)=n: write g(4)=A057650(n) in hereditary representation base 4, bump to base 5, then subtract 1 to produce g(5).

Original entry on oeis.org

0, 2, 60, 467, 3125, 3127, 6310, 9842, 15625, 15627, 15685, 16092, 18750, 18752, 53793641718868912174424175024032593379100060
Offset: 2

Views

Author

Henry Bottomley, Feb 12 2001

Keywords

Comments

1.911...*10^2184 = a(18) < a(19) < ... < a(31) = a(18) + 18752. - Pontus von Brömssen, Sep 20 2020

Examples

			a(12) = 15685 since with g(2) = 12 = 2^(2 + 1) + 2^2, we get g(3) = 3^(3 + 1) + 3^3-1 = 107 = 3^(3 + 1) + 2*3^2 + 2*3 + 2, g(4) = 4^(4 + 1) + 2*4^2 + 2*4 + 2-1 = 1065 and g(5) = 5^(5 + 1) + 2*5^2 + 2*5^1 + 1-1.
		

Crossrefs

Programs

  • Haskell
    -- See Link
    
  • Python
    from sympy.ntheory.factor_ import digits
    def bump(n,b):
      s=digits(n,b)[1:]
      l=len(s)
      return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i])
    def A059934(n):
      for i in range(2,5):
        n=bump(n,i)-1
      return n # Pontus von Brömssen, Sep 20 2020

A059935 Fourth step in Goodstein sequences, i.e., g(6) if g(2)=n: write g(5)=A059934(n) in hereditary representation base 5, bump to base 6, then subtract 1 to produce g(6).

Original entry on oeis.org

1, 83, 775, 46655, 46657, 93395, 140743, 279935, 279937, 280019, 280711, 326591, 326593, 19916489515870532960258562190639398471599239042185934648024761145811
Offset: 3

Views

Author

Henry Bottomley, Feb 12 2001

Keywords

Comments

2.659...*10^36305 = a(18) < a(19) < ... < a(31) = a(18) + 326594. - Pontus von Brömssen, Sep 20 2020

Examples

			a(12) = 280019 since with g(2) = 12 = 2^(2 + 1) + 2^2, we get g(3) = 3^(3 + 1) + 3^3-1 = 107 = 3^(3 + 1) + 2*3^2 + 2*3 + 2, g(4) = 4^(4 + 1) + 2*4^2 + 2*4 + 1 = 1065, g(5) = 5^(5 + 1) + 2*5^2 + 2*5 = 15685 and g(6) = 6^(6 + 1) + 2*6^2 + 6 + 5 = 280019.
		

Crossrefs

Programs

  • Haskell
    -- See Link
    
  • Python
    from sympy.ntheory.factor_ import digits
    def bump(n,b):
      s=digits(n,b)[1:]
      l=len(s)
      return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i])
    def A059935(n):
      for i in range(2,6):
        n=bump(n,i)-1
      return n # Pontus von Brömssen, Sep 20 2020

A137411 Weak Goodstein sequence starting at 11.

Original entry on oeis.org

11, 30, 67, 127, 217, 343, 511, 636, 775, 928, 1095, 1276, 1471, 1680, 1903, 2139, 2389, 2653, 2931, 3223, 3529, 3849, 4183, 4531, 4893, 5269, 5659, 6063, 6481, 6913, 7359, 7818, 8291, 8778, 9279, 9794, 10323, 10866, 11423, 11994, 12579, 13178
Offset: 0

Views

Author

Nicholas Matteo (kundor(AT)kundor.org), Apr 15 2008

Keywords

Comments

The sequence eventually goes to zero, as can be seen by noting that multiples of the highest exponent (3 in this case) only go down; in fact the 8th term, a(8) = 7*8^2 + 7*8 + 7 = 511; after which the multiple of the square term will only go down, etc.
This sequence, for 11, grows beyond the quintillions of digits before going to zero.
From Zhuorui He, Aug 07 2025: (Start)
For more info see A266201-A266202.
This sequence has A266203(11)+1 terms and a(A266203(11))=0 is the last term of this sequence. The maximum term in this sequence is a((A266203(11)-1)/2)=(A266203(11)+1)/2. 10^^8 < A266203(11) < 10^^9.
More precisely, 10^(10^(10^(10^(10^(10^(10^619.29937)))))) < A266203(11) < 10^(10^(10^(10^(10^(10^(10^619.299371)))))). (End)

Examples

			a(0) = 11 = 2^3 + 2^1 + 2^0
a(1) = 3^3 + 3^1 + 3^0 - 1 = 30
a(2) = 4^3 + 4^1 - 1 = 4^3 + 3*4^0 = 67
		

References

  • K. Hrbacek and T. Jech, Introduction to Set Theory, Taylor & Francis Group, 1999, pp. 125-127.

Crossrefs

Cf. A056004 (strong Goodstein sequences), A059933 (strong Goodstein sequence for 16.).
Weak Goodstein sequences: A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A271988: g_n(7); A271989: g_n(8); A271990: g_n(9); A271991: g_n(10); A137411: g_n(11); A271992: g_n(16); A265034: g_n(266); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,FromDigits[IntegerDigits[a,n+1],n+2]-1}; Transpose[ NestList[ nxt,{1,11},50]][[2]] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    a(n, m=11) = { my(wn = m); for (k=2, n+1, wn = fromdigits(digits(wn, k), k+1) - 1); wn; } \\ Zhuorui He, Aug 08 2025

Formula

To obtain a(n + 1), write a(n) in base n + 2, increase the base to n + 3 and subtract 1.

Extensions

Offset changed to 0 by Zhuorui He, Aug 07 2025

A265034 Weak Goodstein sequence beginning with 266.

Original entry on oeis.org

266, 6590, 65601, 390750, 1679831, 5765085, 16777579, 43047173, 100000551, 214359541, 429982475, 815731628, 1475790101, 2562891818, 4294968647, 6975758960, 11019962273, 16983564926, 25600002083, 37822861652, 54875876045, 78310988018, 110075317151, 152587893847
Offset: 0

Views

Author

N. J. A. Sloane, Dec 09 2015, following a suggestion from Alexander R. Povolotsky

Keywords

Crossrefs

Extensions

More terms from Chai Wah Wu, Dec 09 2015
Showing 1-10 of 21 results. Next