cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A266201 Goodstein numbers: a(n) = G_n(n), where G is the Goodstein function.

Original entry on oeis.org

0, 0, 1, 2, 83, 1197, 187243, 37665879, 20000000211, 855935016215, 44580503598539, 2120126221988686, 155568095557812625, 6568408355712901455, 295147905179358418247, 14063084452070776884879
Offset: 0

Views

Author

Natan Arie Consigli, Jan 22 2016

Keywords

Comments

To write an integer n in base-k hereditary representation, write n in ordinary base-k representation, and then do the same recursively for all exponents which are greater than k.
For example, the hereditary representation of 132132 in base-2 is:
132132 = 2^17 + 2^10 + 2^5 + 2^2
= 2^(2^4 + 1) + 2^(2^3 + 2) + 2^(2^2 + 1) + 2^2
= 2^(2^(2^2) + 1) + 2^(2^(2+1) + 2) + 2^(2^2 + 1) + 2^2.
Define B_k(n) to be the function that substitutes k+1 for all the bases of the base-k hereditary representation of n.
E.g., B_2(101) = B_2(2^(2^2 + 2) + 2^(2^2 + 1) + 2^2 + 1) = 3^(3^3 + 3) + 3^(3^3 + 1) + 3^3 + 1 = 228767924549638.
(Sometimes B_k(n) is referred to as n "bumped" from base k.)
The Goodstein function is defined as: G_k(n) = B_{k+1}(G_{k-1}(n)) - 1 with G_0(n) = n, i.e., iteration of bumping the number to the next larger base and subtracting one; see example section for instances.
Goodstein's theorem says that for any nonnegative n, the sequence G_k(n) eventually stabilizes and then decreases by 1 in each step until it reaches 0. (The subsequent values of G_k(n) < 0 are not part of the sequence.)
Named after the English mathematician Reuben Louis Goodstein (1912-1985). - Amiram Eldar, Jun 19 2021

Examples

			Compute a(5) = G_5(5):
G_0(5) = 5;
G_1(5) = B_2(G_0(5))-1 = B_2(2^2+1)-1 = (3^3+1)-1 = 27 = 3^3;
G_2(5) = B_3(G_1(5))-1 = B_3(3^3)-1 = 4^4-1 = 255 = 3*4^3+3*4^2+3*4+3;
G_3(5) = B_4(G_2(5))-1 = B_4(3*4^3+3*4^2+3*4+3)-1 = 467;
G_4(5) = B_5(G_3(5))-1 = B_5(3*5^3+3*5^2+3*5+2)-1 = 775;
G_5(5) = B_6(G_4(5))-1 = B_6(3*6^3+3*6^2+3*6+1)-1 = 1197.
		

Crossrefs

Cf. Goodstein sequences: A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A215409: G_n(3); A056193: G_n(4); A266204: G_n(5); A266205: G_n(6); A222117: G_n(15); A059933: G_n(16); A211378: G_n(19).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A266203: a(n) = k such that g_k(n)=0;
Bumping Sequences: A222112: B_2(n);
Other sequences: A222113.

Programs

  • PARI
    (B(n,b)=sum(i=1,#n=digits(n,b),n[i]*(b+1)^if(#nA266201(n)=for(k=1,n,n=B(n,k+1)-1);n \\ M. F. Hasler, Feb 12 2017

Extensions

Edited by M. F. Hasler, Feb 12 2017
Incorrect a(16) deleted (the correct value is ~ 2.77*10^861) by M. F. Hasler, Feb 19 2017

A266202 Weak Goodstein numbers: a(n) = g_n(n), where g_n(n) is the weak Goodstein function.

Original entry on oeis.org

0, 0, 1, 2, 11, 21, 43, 69, 211, 389, 779, 1276, 2753, 3405, 4167, 5029, 12317, 21691, 42083, 68050, 234257, 279872, 331871, 390781, 458271, 533659, 618679, 713344, 831407, 953343, 1081455, 1222053, 2753231, 4634203, 8637959, 13483492, 49254279, 90224223, 102400127
Offset: 0

Views

Author

Natan Arie Consigli, Jan 22 2016

Keywords

Comments

A nonnegative n in ordinary (depth-1) base-k representation is n rewritten as a linear combination k powers n = n_1*b^m_1 + ... + n_k*b^m_k where 0 < n_i < b and m_1 > ... > m_k >= 0.
For instance, the ordinary representation of 34 in base 3 is 3^3 + 2*3 + 1.
Let b_k(n) be the function that substitutes the bases of the base-k representation of n with the base k+1. E.g., b_3(34) = b_3(3^3 + 2*3 + 1) = 4^3 + 2*4 + 1 = 73.
Define the weak Goodstein function as: g_k(n) = b_(k+1)(g_(k-1)(n))-1, g_0(n) = n.
See example for instances.
Let n be a fixed nonnegative integer: Goodstein's theorem shows that the sequence g_k(n) eventually stabilizes and then decreases by 1 at each step until it reaches 0. Thereafter, all the values of g_k(n) < 0 are not part of the sequence.
By Goodstein's theorem we conclude that g_k(n) is a finite sequence.

Examples

			Find a(5) = g_5(5):
g_0(5) = 5;
g_1(5) = b_2(5)-1 = b_2(2^2+1)-1 = 3^2+1-1 = 9;
g_2(5) = b_3(3^2)-1 = 4^2-1 = 15;
g_3(5) = b_4(3*4 + 3)-1 = 3*5+3-1 = 17;
g_4(5) = b_5(3*5 + 2)-1 = 3*6 + 2-1 = 19;
g_5(5) = b_6(3*6 + 1)-1 = 3*7+1-1 = 21.
		

Crossrefs

Cf. A266201 ("Strong" Goodstein numbers).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A267648: g_n(5); A266203: a(n) = k such that g_k(n)=0.

Programs

  • Mathematica
    g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, n], {n, 0, 38}] (* Michael De Vlieger, Mar 18 2016 *)
  • PARI
    a(n) = {if (n == 0, return (0)); wn = n; for (k=2, n+1, pd = Pol(digits(wn, k)); wn = subst(pd, x, k+1) - 1;); wn;} \\ Michel Marcus, Feb 23 2016
    
  • PARI
    a(n) = {if (n == 0, return (0)); wn = n; for(k=2, n+1, vd = digits(wn, k); wn = fromdigits(vd, k+1) - 1;); wn;} \\ Michel Marcus, Feb 19 2017

Extensions

More terms from Michel Marcus, Feb 23 2016

A137411 Weak Goodstein sequence starting at 11.

Original entry on oeis.org

11, 30, 67, 127, 217, 343, 511, 636, 775, 928, 1095, 1276, 1471, 1680, 1903, 2139, 2389, 2653, 2931, 3223, 3529, 3849, 4183, 4531, 4893, 5269, 5659, 6063, 6481, 6913, 7359, 7818, 8291, 8778, 9279, 9794, 10323, 10866, 11423, 11994, 12579, 13178
Offset: 0

Views

Author

Nicholas Matteo (kundor(AT)kundor.org), Apr 15 2008

Keywords

Comments

The sequence eventually goes to zero, as can be seen by noting that multiples of the highest exponent (3 in this case) only go down; in fact the 8th term, a(8) = 7*8^2 + 7*8 + 7 = 511; after which the multiple of the square term will only go down, etc.
This sequence, for 11, grows beyond the quintillions of digits before going to zero.
From Zhuorui He, Aug 07 2025: (Start)
For more info see A266201-A266202.
This sequence has A266203(11)+1 terms and a(A266203(11))=0 is the last term of this sequence. The maximum term in this sequence is a((A266203(11)-1)/2)=(A266203(11)+1)/2. 10^^8 < A266203(11) < 10^^9.
More precisely, 10^(10^(10^(10^(10^(10^(10^619.29937)))))) < A266203(11) < 10^(10^(10^(10^(10^(10^(10^619.299371)))))). (End)

Examples

			a(0) = 11 = 2^3 + 2^1 + 2^0
a(1) = 3^3 + 3^1 + 3^0 - 1 = 30
a(2) = 4^3 + 4^1 - 1 = 4^3 + 3*4^0 = 67
		

References

  • K. Hrbacek and T. Jech, Introduction to Set Theory, Taylor & Francis Group, 1999, pp. 125-127.

Crossrefs

Cf. A056004 (strong Goodstein sequences), A059933 (strong Goodstein sequence for 16.).
Weak Goodstein sequences: A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A271988: g_n(7); A271989: g_n(8); A271990: g_n(9); A271991: g_n(10); A137411: g_n(11); A271992: g_n(16); A265034: g_n(266); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,FromDigits[IntegerDigits[a,n+1],n+2]-1}; Transpose[ NestList[ nxt,{1,11},50]][[2]] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    a(n, m=11) = { my(wn = m); for (k=2, n+1, wn = fromdigits(digits(wn, k), k+1) - 1); wn; } \\ Zhuorui He, Aug 08 2025

Formula

To obtain a(n + 1), write a(n) in base n + 2, increase the base to n + 3 and subtract 1.

Extensions

Offset changed to 0 by Zhuorui He, Aug 07 2025

A267647 a(n) = g_n(4), where g is the weak Goodstein function defined in A266202.

Original entry on oeis.org

4, 8, 9, 10, 11, 11, 11, 11, 11, 11, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Natan Arie Consigli, Mar 17 2016

Keywords

Comments

For more info see A266201 - A266202.

Examples

			g_1(4) = b_2(4)-1 = b_2(2^2)-1 = 3^2-1 = 8;
g_2(4) = b_3(2*3+2)-1 = 2*4 + 2-1 = 9;
g_3(4) = b_4(2*4+1)-1 = 2*5 + 1-1 = 10;
g_4(4) = b_5(2*5)-1= 2*6 - 1 = 11;
g_5(4) = b_6(6+5)-1 = 7+5-1 = 11;
g_6(4) = b_7(7+4)-1 = 8+4-1 = 11;
g_7(4) = b_8(8+3)-1 = 9+3-1 = 11;
g_8(4) = b_9(9+2)-1 = 10+2-1 = 11;
g_9(4) = b_10(10+1)-1 = 11+1-1 = 11;
g_10(4) = b_11(11)-1 = 12-1 = 11;
g_11(4) = b_12(11)-1 = 11-1 = 10;
g_12(4) = b_13(10)-1 = 10-1 = 9;
g_13(4) = b_14(9)-1 = 9-1 = 8;
…
g_21(4) = 0;
		

Crossrefs

Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A267648: g_5(n); A266203: a(n) = k such that g_k(n)=0;
A056193: G_n(4).

Programs

  • Mathematica
    g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 4], {n, 0, 21}] (* Michael De Vlieger, Mar 18 2016 *)
  • PARI
    a(n) = {if (n == 0, return (4)); wn = 4; for (k=2, n+1, pd = Pol(digits(wn, k)); wn = subst(pd, x, k+1) - 1; ); wn; }
    vector(22, n, n--; a(n)) \\ Michel Marcus, Apr 03 2016

A267648 a(n) = g_n(5) where g is the function defined in A266202.

Original entry on oeis.org

5, 9, 15, 17, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Natan Arie Consigli, Mar 17 2016

Keywords

Comments

For more info see A266201-A266202.
This sequence has A266203(5)+1=62 terms and a(A266203(5))=a(61)=0 is the last term of this sequence. The maximum term in this sequence is a((A266203(5)-1)/2)=a(30)=(A266203(5)+1)/2=31. - Zhuorui He, Aug 08 2025

Examples

			g_1(5) = b_2(5)-1 = b_2(2^2+1)-1 = 3^2+1-1 = 9;
g_2(5) = b_3(3^2)-1 = 4^2-1 = 15;
g_3(5) = b_4(3*4+3)-1 = 3*5+3-1 = 17;
g_4(5) = b_5(3*5 + 2)-1 = 3*6 + 2-1 = 19;
g_5(5) = b_6(3*6 + 1)-1 = 3*7+1-1 = 21;
g_6(5) = b_7(3*7)-1 = 3*8-1 = 23;
g_7(5) = b_8(2*8+7)-1 = 2*9+7-1 = 24;
g_8(5) = b_9(2*9+6)-1 = 2*10+6-1 = 25;
g_9(5) = b_10(2*10+5)-1 = 2*11+5-1 = 26;
g_10(5) = b_11(2*11+4)-1 = 2*12+4-1 = 27;
g_11(5) = b_12(2*12+3)-1 = 2*13+3-1 = 28;
g_12(5) = b_13(2*13+2)-1 = 2*14+2-1 = 29;
g_13(5) = b_14(2*14+1)-1 = 2*15+1-1 = 30;
g_14(5) = b_15(2*15)-1 = 2*16-1 = 31;
g_15(5) = b_16(16+15)-1 = 17+15-1 = 31;
...
g_30(5) = b_31(31)-1 = 31;
g_31(5) = b_32(31)-1 = 30;
g_32(5) = b_33(30)-1 = 29;
...
g_61(5) = 0. (End of sequence)
		

Crossrefs

Cf. A266204: G_n(5).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A266202: g_n(n); A266203: a(n) = k such that g_k(n)=0.

Programs

  • Mathematica
    g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 5], {n, 0, 61}] (* Michael De Vlieger, May 17 2016 *)
  • PARI
    a(n, m=5) = { my(wn = m); for (k=2, n+1, wn = fromdigits(digits(wn, k), k+1) - 1); wn; }
    vector(62, n, n--; a(n)) \\ Michel Marcus, Apr 03 2016 and Aug 08 2025

Extensions

Duplicated a(31) removed by Zhuorui He, Aug 07 2025

A056041 Value for which b(a(n))=0 when b(2)=n and b(k+1) is calculated by writing b(k) in base k, reading this as being written in base k+1 and then subtracting 1.

Original entry on oeis.org

2, 3, 5, 7, 23, 63, 383, 2047
Offset: 0

Views

Author

Henry Bottomley, Aug 04 2000

Keywords

Comments

a(8)=3*2^(3*2^27+27)-1 which is more than 10^(10^8) and equal to the final base of the Goodstein sequence starting with g(2)=4; indeed, apart from the initial term, the sequence starting with b(2)=8 is identical to the Goodstein sequence starting with g(2)=4. The initial terms of a(n) [2, 3, 5 and 7] are equal to the initial terms of the equivalent final bases of Goodstein sequences starting at the same points. a(9)=2^(2^(2^70+70)+2^70+70)-1 which is more than 10^(10^(10^20)).
It appears that if n is even then a(n) is one less than three times a power of two, while if n is odd then a(n) is one less than a power of two.
Comment from John Tromp, Dec 02 2004: The sequence 2,3,5,7,3*2^402653211 - 1, ... gives the final base of the Goodstein sequence starting with n. This is an example of a very rapidly growing function that is total (i.e. defined on any input), although this fact is not provable in first-order Peano Arithmetic. See the links for definitions. This grows even faster than the Friedman sequence described in the Comments to A014221.
In fact there are two related sequences: (i) The Goodstein function l(n) = number of steps for the Goodstein sequence to reach 0 when started with initial term n >= 0: 0, 1, 3, 5, 3*2^402653211 - 3, ...; and (ii) the same sequence + 2: 2, 3, 5, 7, 3*2^402653211 - 1, ..., which is the final base reached. Both grow too rapidly to have their own entries in the database.
Related to the hereditary base sequences - see cross-reference lines.
This sequence gives the final base of the weak Goodstein sequence starting with n; compare A266203, the length of the weak Goodstein sequence. a(n) = A266203(n) + 2.

Examples

			a(3)=7 because starting with b(2)=3=11 base 2, we get b(3)=11-1 base 3=10 base 3=3, b(4)=10-1 base 4=3, b(5)=3-1 base 5=2, b(6)=2-1 base 6=1 and b(7)=1-1 base 7=0.
		

Crossrefs

Equals A266203 + 2.
Steps of strong Goodstein sequences: A056004, A057650, A059934, A059935, A059936, A271977.
Strong Goodstein sequences: A215409, A056193, A266204, A222117, A059933.
Woodall numbers: A003261.

A271987 g_n(6) where g is the weak Goodstein function defined in A266202.

Original entry on oeis.org

6, 11, 17, 25, 35, 39, 43, 47, 51, 55, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161
Offset: 0

Views

Author

Natan Arie Consigli, May 15 2016

Keywords

Comments

For more info see A266201-A266202.

Examples

			g_1(6) = b_2(6)-1 = b_2(2^2+2)-1 = 3^2+3-1 = 11;
g_2(6) = b_3(3^2+2)-1 = 4^2+2-1 = 17;
g_3(6) = b_4(4^2+1)-1 = 5^2+1-1 = 25;
g_4(6) = b_5(5^2)-1 = 6^2-1 = 35;
g_5(6) = b_6(5*6+5)-1 = 5*7+5-1 = 39;
g_6(6) = b_7(5*7+4)-1 = 5*8+4-1 = 43;
g_7(6) = b_8(5*8+3)-1 = 5*9+3-1 = 47;
g_8(6) = b_9(5*9+2)-1 = 5*10+2-1 = 51;
g_9(6) = b_10( 5*10+1)-1 = 5*11+1-1= 55;
g_10(6) = b_11(5*11)-1 = 5*12-1 = 59;
g_11(6) = b_12(4*12+11)-1 = 4*13+11-1= 62;
g_12(6) = b_13(4*13+10)-1 = 4*14+10-1 = 65;
...
g_381(6) = 0.
		

Crossrefs

Cf. A266205: G_n(6).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A267648: g_n(5); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Programs

  • Mathematica
    g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 6], {n, 0, 64}] (* Michael De Vlieger, May 17 2016 *)

A271988 g_n(7) where g is the weak Goodstein function defined in A266202.

Original entry on oeis.org

7, 12, 19, 27, 37, 49, 63, 69, 75, 81, 87, 93, 99, 105, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 271, 275, 279, 283, 287, 291, 295, 299, 303, 307, 311, 315, 319, 322, 325
Offset: 0

Views

Author

Natan Arie Consigli, May 21 2016

Keywords

Comments

For more info see A266201-A266202.

Examples

			g_1(7)= b_2(7)-1 = b_2(2^2+2+1)-1 = 3^2+3+1-1 = 12;
g_2(7) = b_3(3^2+3)-1 = 4^2+4-1 = 19;
g_3(7) = b_4(4^2+3)-1 = 5^2+3-1 = 27;
g_4(7) = b_5(5^2+2)-1 = 6^2+2-1 = 37;
g_5(7) = b_6(6^2+1)-1 = 7^2+1-1 = 49;
g_6(7) = b_7(7^2)-1 = 8^2-1 = 63;
g_7(7) = b_8(7*8+7)-1 = 7*9+7-1 = 69;
...
g_2045(7) = 0.
		

Crossrefs

Cf. A271554: G_n(7).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Programs

  • Mathematica
    g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 7], {n, 0, 64}]

A271989 g_n(8) where g is the weak Goodstein function defined in A266202.

Original entry on oeis.org

8, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, 401, 458, 519, 584, 653, 726, 803, 884, 969, 1058, 1151, 1222, 1295, 1370, 1447, 1526, 1607, 1690, 1775, 1862, 1951, 2042, 2135, 2230, 2327, 2426, 2527, 2630, 2735, 2842, 2951, 3062, 3175, 3290, 3407, 3525, 3645, 3767, 3891, 4017, 4145, 4275, 4407, 4541
Offset: 0

Views

Author

Natan Arie Consigli, May 22 2016

Keywords

Comments

For more info see A266201-A266202.

Examples

			g_1(8) = b_2(8)-1 = b_2(2^3)-1 = 3^3-1 = 26;
g_2(8) = b_3(2*3^2+2*3+2)-1 = 2*4^2+2*4+2-1 = 41;
g_3(8) = b_4(2*4^2+2*4+1)-1 = 2*5^2+2*5+1-1 = 60;
g_4(8) = b_5(2*5^2+2*5)-1 = 2*6^2+2*6-1 = 83;
g_5(8) = b_6(2*6^2+6+5)-1 = 2*7^2+7+5-1 = 109;
g_6(8) = b_7(2*7^2+7+4)-1 = 2*8^2+8+4-1 = 139;
g_7(8) = b_8(2*8^2+8+3)-1 = 2*9^2+9+3-1 = 173;
g_8(8) = b_9(2*9^2+9+2)-1 = 2*10^2+10+2-1 = 211;
g_9(8) = b_10(2*10^2+10+1)-1 = 2*11^2+11+1-1 = 253;
g_10(8) = b_11(2*11^2+11)-1 = 2*12^2+12-1 = 299.
		

Crossrefs

Essentially the same as A056193.
Cf. G_n(8): A271555.
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A271988: g_n(7); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Programs

  • Mathematica
    g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 8], {n, 0, 55}]

A271990 g_n(9) where g is the weak Goodstein function defined in A266202.

Original entry on oeis.org

9, 27, 63, 92, 127, 168, 215, 267, 325, 389, 459, 535, 617, 705, 799, 898, 1003, 1114, 1231, 1354, 1483, 1618, 1759, 1906, 2059, 2218, 2383, 2554, 2731, 2914, 3103, 3297, 3497, 3703, 3915, 4133, 4357, 4587, 4823, 5065, 5313, 5567, 5827, 6093, 6365, 6643
Offset: 0

Views

Author

Natan Arie Consigli, May 22 2016

Keywords

Comments

For more info see A266201-A266202.

Crossrefs

Cf. A271556: G_n(9).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Programs

  • Mathematica
    g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 9], {n, 0, 45}]
Showing 1-10 of 12 results. Next