cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A266204 a(n) = G_n(5), where G_n(k) is the Goodstein function defined in A266201.

Original entry on oeis.org

5, 27, 255, 467, 775, 1197, 1751, 2454, 3325, 4382, 5643, 7126, 8849, 10830, 13087, 15637, 18499, 21691, 25231, 29137, 33427, 38119, 43231, 48781, 54787, 61267, 68239, 75721, 83731, 92287, 101407, 111108, 121409, 132328, 143883, 156092, 168973, 182544, 196823
Offset: 0

Views

Author

Natan Arie Consigli, Jan 22 2016

Keywords

Examples

			G_0(5) = 5;
G_1(5) = B_2(5) - 1 = B_2(2^2 + 1) - 1 = 27;
G_2(5) = B_3(3^3) - 1 = 4^4 - 1 = 255;
G_3(5) = B_4(3*4^3 + 3*4^2 + 3*4 + 3) - 1 = 3*5^3 + 3*5^2 + 3*5 + 3 - 1 = 467.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A059936: G_5(n), A266201: G_n(n).

Programs

  • PARI
    bump(a, n) = {if (a < n, return (a)); my(pd = Pol(digits(a, n)));  my(de = vector(poldegree(pd)+1, k, k--; polcoeff(pd, k))); my(bde = vector(#de, k, k--; bump(k, n))); my(q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^bde[k+1], 0))); return(subst(q, x, n+1)); }
    lista(nn) = {print1(a = 5, ", "); for (n=2, nn, a = bump(a, n)-1; print1(a, ", "); ); } \\ Michel Marcus, Feb 28 2016

A266205 a(n) = G_n(6), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

6, 29, 257, 3125, 46655, 98039, 187243, 332147, 555551, 885775, 1357259, 2011162, 2895965, 4068068, 5592391, 7542974, 10003577, 13068280, 16842083, 21441506, 26995189, 33644492, 41544095, 50862597, 61783119, 74503901, 89238903, 106218405, 125689607, 147917229
Offset: 0

Views

Author

Natan Arie Consigli, Jan 23 2016

Keywords

Examples

			G_1(6) = B_2(6) - 1 = B_2(2^2 + 2) - 1 = 3^3 + 3 - 1 = 29;
G_2(6) = B_3(G_1(6)) - 1 = B_3(3^3 + 2) - 1 =  4^4 + 2 - 1 = 257;
G_3(6) = B_4(G_2(6)) - 1 = 5^5 + 1 - 1 = 3125;
G_4(6) = B_5(G_3(6)) - 1 = 6^6 - 1 = 46655;
G_5(6) = B_6(G_4(6)) - 1 = 5*7^5 + 5*7^4 + 5*7^3 + 5*7^2 + 5*7 + 5 - 1 = 98039.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A059936: G_5(n), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 6, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "););} \\ Michel Marcus, Feb 22 2016

A271554 a(n) = G_n(7), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

7, 30, 259, 3127, 46657, 823543, 16777215, 37665879, 77777775, 150051213, 273624711, 475842915, 794655639, 1281445305, 2004318063, 3051893870, 4537630813, 6604718946, 9431578931, 13238000758, 18291957825, 24917131658, 33501182551, 44504801406, 58471578053, 76038721330
Offset: 0

Views

Author

Natan Arie Consigli, Apr 10 2016

Keywords

Examples

			G_1(7) = B_2(7) - 1 = B[2](2^2 + 2 + 1) - 1 = 3^3 + 3 + 1 - 1 = 30;
G_2(7) = B_3(G_1(7)) - 1 = B[3](3^3 + 3) - 1 =  4^4 + 4 - 1 = 259;
G_3(7) = B_4(G_2(7)) - 1 = 5^5 + 3 - 1 = 3127;
G_4(7) = B_5(G_3(7)) - 1 = 6^6 + 2 - 1 = 46657;
G_5(7) = B_6(G_4(7)) - 1 = 7^7 + 1 - 1 = 823543;
G_6(7) = B_7(G_5(7)) - 1 = 8^8 - 1 = 16777215;
G_7(7) = B_8(G_6(7)) - 1 = 7*9^7 + 7*9^6 + 7*9^5 + 7*9^4 + 7*9^3 + 7*9^2 + 7*9 + 7 - 1 = 37665879.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 7, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A271555 a(n) = G_n(8), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

8, 80, 553, 6310, 93395, 1647195, 33554571, 774841151, 20000000211, 570623341475, 17832200896811, 605750213184854, 22224013651116433, 875787780761719208, 36893488147419103751, 1654480523772673528938, 78692816150593075151501, 3956839311320627178248684
Offset: 0

Views

Author

Natan Arie Consigli, Apr 10 2016

Keywords

Examples

			G_1(8) = B_2(8)-1 = B_2(2^(2+1))-1 = 3^(3+1)-1 = 80;
G_2(8) = B_3(2*3^3+2*3^2+2*3+2)-1 = 2*4^4+2*4^2+2*4+2-1 = 553;
G_3(8) = B_4(2*4^4+2*4^2+2*4+1)-1 = 2*5^5+2*5^2+2*5+1-1 = 6310;
G_4(8) = B_5(2*5^5+2*5^2+2*5)-1 = 2*6^6+2*6^2+2*6-1 = 93395;
G_5(8) = B_6(2*6^6+2*6^2+6+5)-1 = 2*7^7+2*7^2+7+5-1 = 1647195;
G_6(8) = B_7(2*7^7+2*7^2+7+4)-1 = 2*8^8+2*8^2+8+4-1 = 33554571;
G_7(8) = B_8(2*8^8+2*8^2+8+3)-1 = 2*9^9+2*9^2+9+3-1 = 774841151.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 8, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

Extensions

a(3) corrected by Nicholas Matteo, Aug 15 2019

A271556 a(n) = G_n(9), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

9, 81, 1023, 9842, 140743, 2471826, 50333399, 1162263921, 30000003325, 855935016215, 26748301350411, 908625319783885, 33336020476682897, 1313681671142588955, 55340232221128667935, 2481720785659010308168, 118039224225889612744771, 5935258966980940767393628
Offset: 0

Views

Author

Natan Arie Consigli, Apr 10 2016

Keywords

Examples

			G_1(9) = B_2(9)-1 = B_2(2^(2+1)+1)-1 = 3^(3+1) + 1-1 = 81;
G_2(9) = B_3(3^(3+1))-1 = 4^(4+1)-1 = 1023;
G_3(9) = B_4(3*4^4 + 3*4^3 + 3*4^2 + 3*4 + 3)-1 = 3*5^5 + 3*5^3 + 3*5^2 + 3*5 + 3-1 = 9842;
G_4(9) = B_5(3*5^5 + 3*5^3 + 3*5^2 + 3*5 + 2)-1 = 3*6^6 + 3*6^3 + 3*6^2 + 3*6 + 2-1 = 140743;
G_5(9) = B_6(3*6^6 + 3*6^3 + 3*6^2 + 3*6 + 1)-1 = 3*7^7 + 3*7^3 + 3*7^2 + 3*7 + 1-1 = 2471826;
G_6(9) = B_7(3*7^7 + 3*7^3 + 3*7^2 + 3*7)-1 = 3*8^8 + 3*8^3 + 3*8^2 + 3*8-1 = 50333399.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 9, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A271557 a(n) = G_n(10), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

10, 83, 1025, 15625, 279935, 4215754, 84073323, 1937434592, 50000555551, 1426559238830, 44580503598539, 1514375534972427, 55560034130686045, 2189469451908364943, 92233720368553350471, 4136201309431691363859, 196732040376482697880697, 9892098278301567958688175
Offset: 0

Views

Author

Natan Arie Consigli, Apr 11 2016

Keywords

Examples

			G_1(10) = B_2(10)-1 = B_2(2^(2+1)+2)-1 = 3^(3+1)+3-1 = 83;
G_2(10) = B_3(3^(3+1)+2)-1 = 4^(4+1)+2-1 = 1025;
G_3(10) = B_4(4^(4+1)+1)-1 = 5^(5+1)+1-1 = 15625;
G_4(10) = B_5(5*5^(5+1))-1 = 6^(6+1)-1= 279935;
G_5(10) = B_6(5*6^6+5*6^5+5*6^4+5*6^3+5*6^2+5*6+5)-1 = 5*7^7+5*7^5+5*7^4+5*7^3+5*7^2+5*7+5-1 = 4215754;
G_6(10) = B_7(5*7^7+5*7^5+5*7^4+5*7^3+5*7^2+5*7+4)-1 = 5*8^8+5*8^5+5*8^4+5*8^3+5*8^2+5*8+4-1 = 84073323;
G_7(10) = B_8(5*8^8+5*8^5+5*8^4+5*8^3+5*8^2+5*8+3)-1 = 5*9^9+5*9^5+5*9^4+5*9^3+5*9^2+5*9+3-1 = 1937434592;
G_8(10) = B_9(5*9^9+5*9^5+5*9^4+5*9^3+5*9^2+5*9+2)-1 = 5*10^10+5*10^5+5*10^4+5*10^3+5*10^2+5*10+2-1 = 50000555551.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 10, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A271977 G_6(n), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

0, 139, 1751, 187243, 16777215, 33554571, 50333399, 84073323, 134217727, 134217867, 134219479, 134404971, 150994943
Offset: 3

Views

Author

Natan Arie Consigli, Apr 24 2016

Keywords

Comments

The next term (line break for better formatting) is a(16) = \
1619239197880733074062994004113160848331305687934176134326809 \
538279709713884753268291640071900343455846003089194770060104834018705547.
a(17) = 2.870...*10^1585, a(18) = 6.943...*10^169099. - Pontus von Brömssen, Sep 24 2020

Examples

			Find G_6(7):
G_1(7) = B_2(7)-1= B_2(2^2+2+1)-1 = 3^3+3+1-1 = 30;
G_2(7) = B_3(G_1(7))-1 = B_3(3^3+3)-1 =  4^4+4-1 = 259;
G_3(7) = B_4(G_2(7))-1 = 5^5+3-1 = 3127;
G_4(7) = B_5(G_3(7))-1 = 6^6+2-1 = 46657;
G_5(7) = B_6(G_4(7))-1 = 7^7+1-1 = 823543;
G_6(7) = B_7(G_5(7))-1 = 8^8-1 = 16777215.
		

Crossrefs

Cf. A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); this sequence: G_6(n); A271978: G_7(n); A271979: G_8(n); A271985: G_9(n); A271986: G_10(n); A266201: G_n(n).

Programs

  • Python
    from sympy.ntheory.factor_ import digits
    def bump(n,b):
      s=digits(n,b)[1:]
      l=len(s)
      return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i])
    def A271977(n):
      if n==3: return 0
      for i in range(2,8):
        n=bump(n,i)-1
      return n # Pontus von Brömssen, Sep 24 2020

Extensions

a(10) corrected by Pontus von Brömssen, Sep 24 2020

A271558 a(n) = G_n(11), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

11, 84, 1027, 15627, 279937, 5764801, 134217727, 2749609302, 70077777775, 1997331745490, 62412976762503, 2120126221988686, 77784048573561751, 3065257233947460930, 129127208517971179375, 5790681833207409243109, 275424856527080300658781, 13848937589622201728586799
Offset: 0

Views

Author

Natan Arie Consigli, Apr 11 2016

Keywords

Examples

			G_1(11) = B_2(11)-1 = B_2(2^(2+1)+2+1)-1 = 3^(3+1)+3+1-1 = 84;
G_2(11) = B_3(3^(3+1)+3)-1 = 4^(4+1)+4-1 = 1027;
G_3(11) = B_4(4^(4+1)+3)-1 = 5^(5+1)+3-1 = 15627;
G_4(11) = B_5(5^(5+1)+2)-1 = 6^(6+1)+2-1 = 279937;
G_5(11) = B_6(6^(6+1)+1)-1 = 7^(7+1)+1-1 = 5764801;
G_6(11) = B_7(7^(7+1))-1 = 8^(8+1)-1 = 134217727.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 11, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

Extensions

a(9)-a(13) corrected by Nicholas Matteo, Aug 15 2019
a(14) onwards from Nicholas Matteo, Aug 28 2019

A271559 a(n) = G_n(12), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

12, 107, 1065, 15685, 280019, 5764910, 134217867, 3486784574, 100000000211, 3138428376974, 106993205379371, 3937376385699637, 155568095557812625, 6568408355712891083, 295147905179352826375, 14063084452067724991593, 708235345355337676358285, 37589973457545958193356327
Offset: 0

Views

Author

Natan Arie Consigli, Apr 11 2016

Keywords

Comments

Goodstein's theorem shows that such sequence converges to zero for any starting value.

Examples

			G_1(12) = B_2(12)-1 = B_2(2^(2+1)+2^2)-1 = 3^(3+1)+3^3-1 = 107;
G_2(12) = B_3(3^(3+1)+2*3^2+2*3+2)-1 = 4^(4+1)+2*4^2+2*4+2-1 = 1065;
G_3(12) = B_4(4^(4+1)+2*4^2+2*4+1)-1 = 5^(5+1)+2*5^2+2*5+1-1 = 15685;
G_4(12) = B_5(5^(5+1)+2*5^2+2*5)-1 = 6^(6+1)+2*6^2+2*6-1 = 280019;
G_5(12) = B_6(6^(6+1)+2*6^2+6+5)-1 = 7^(7+1)+2*7^2+7+5-1 = 5764910;
G_6(12) = B_7(7^(7+1)+2*7^2+7+4)-1 = 8^(8+1)+2*8^2+8+4-1 = 134217867;
G_7(12) = B_8(8^(8+1)+2*8^2+8+3)-1 = 9^(9+1)+2*9^2+9+3-1 = 3486784574.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 12, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A271560 a(n) = G_n(13), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

13, 108, 1279, 16092, 280711, 5765998, 134219479, 3486786855, 100000003325, 3138428381103, 106993205384715, 3937376385706415, 155568095557821073, 6568408355712901455, 295147905179352838943, 14063084452067725006646, 708235345355337676376131, 37589973457545958193377292
Offset: 0

Views

Author

Natan Arie Consigli, Apr 11 2016

Keywords

Examples

			G_1(13) = B_2(13)-1 = B_2(2^(2+1)+2^2+1)-1 = 3^(3+1)+3^3+1-1 = 108;
G_2(13) = B_3(3^(3+1)+3^3)-1 = 4^(4+1)+4^4-1 = 1279;
G_3(13) = B_4(4^(4+1)+3*4^3+3*4^2+3*4+3)-1 = 5^(5+1)+3*5^3+3*5^2+3*5+3-1 = 16092;
G_4(13) = B_5(5^(5+1)+3*5^3+3*5^2+3*5+2)-1 = 6^(6+1)+3*6^3+3*6^2+3*6+2-1 = 280711;
G_5(13) = B_6(6^(6+1)+3*6^3+3*6^2+3*6+1)-1 = 7^(7+1)+3*7^3+3*7^2+3*7+1-1 = 5765998;
G_6(13) = B_7(7^(7+1)+3*7^3+3*7^2+3*7)-1 = 8^(8+1)+3*8^3+3*8^2+3*8-1 = 134219479;
G_7(13) = B_8(8^(8+1)+3*8^3+3*8^2+2*8+7)-1 = 9^(9+1)+3*9^3+3*9^2+2*9+7-1 = 3486786855.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {my(a=13); print1(a, ", "); for (n=2, nn, my(pd = Pol(digits(a, n)), q = sum(k=0, poldegree(pd), my(c=polcoeff(pd, k)); if (c, c*x^subst(Pol(digits(k, n)), x, n+1), 0))); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }
Showing 1-10 of 34 results. Next