cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A271558 a(n) = G_n(11), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

11, 84, 1027, 15627, 279937, 5764801, 134217727, 2749609302, 70077777775, 1997331745490, 62412976762503, 2120126221988686, 77784048573561751, 3065257233947460930, 129127208517971179375, 5790681833207409243109, 275424856527080300658781, 13848937589622201728586799
Offset: 0

Views

Author

Natan Arie Consigli, Apr 11 2016

Keywords

Examples

			G_1(11) = B_2(11)-1 = B_2(2^(2+1)+2+1)-1 = 3^(3+1)+3+1-1 = 84;
G_2(11) = B_3(3^(3+1)+3)-1 = 4^(4+1)+4-1 = 1027;
G_3(11) = B_4(4^(4+1)+3)-1 = 5^(5+1)+3-1 = 15627;
G_4(11) = B_5(5^(5+1)+2)-1 = 6^(6+1)+2-1 = 279937;
G_5(11) = B_6(6^(6+1)+1)-1 = 7^(7+1)+1-1 = 5764801;
G_6(11) = B_7(7^(7+1))-1 = 8^(8+1)-1 = 134217727.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 11, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

Extensions

a(9)-a(13) corrected by Nicholas Matteo, Aug 15 2019
a(14) onwards from Nicholas Matteo, Aug 28 2019

A271559 a(n) = G_n(12), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

12, 107, 1065, 15685, 280019, 5764910, 134217867, 3486784574, 100000000211, 3138428376974, 106993205379371, 3937376385699637, 155568095557812625, 6568408355712891083, 295147905179352826375, 14063084452067724991593, 708235345355337676358285, 37589973457545958193356327
Offset: 0

Views

Author

Natan Arie Consigli, Apr 11 2016

Keywords

Comments

Goodstein's theorem shows that such sequence converges to zero for any starting value.

Examples

			G_1(12) = B_2(12)-1 = B_2(2^(2+1)+2^2)-1 = 3^(3+1)+3^3-1 = 107;
G_2(12) = B_3(3^(3+1)+2*3^2+2*3+2)-1 = 4^(4+1)+2*4^2+2*4+2-1 = 1065;
G_3(12) = B_4(4^(4+1)+2*4^2+2*4+1)-1 = 5^(5+1)+2*5^2+2*5+1-1 = 15685;
G_4(12) = B_5(5^(5+1)+2*5^2+2*5)-1 = 6^(6+1)+2*6^2+2*6-1 = 280019;
G_5(12) = B_6(6^(6+1)+2*6^2+6+5)-1 = 7^(7+1)+2*7^2+7+5-1 = 5764910;
G_6(12) = B_7(7^(7+1)+2*7^2+7+4)-1 = 8^(8+1)+2*8^2+8+4-1 = 134217867;
G_7(12) = B_8(8^(8+1)+2*8^2+8+3)-1 = 9^(9+1)+2*9^2+9+3-1 = 3486784574.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 12, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A271560 a(n) = G_n(13), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

13, 108, 1279, 16092, 280711, 5765998, 134219479, 3486786855, 100000003325, 3138428381103, 106993205384715, 3937376385706415, 155568095557821073, 6568408355712901455, 295147905179352838943, 14063084452067725006646, 708235345355337676376131, 37589973457545958193377292
Offset: 0

Views

Author

Natan Arie Consigli, Apr 11 2016

Keywords

Examples

			G_1(13) = B_2(13)-1 = B_2(2^(2+1)+2^2+1)-1 = 3^(3+1)+3^3+1-1 = 108;
G_2(13) = B_3(3^(3+1)+3^3)-1 = 4^(4+1)+4^4-1 = 1279;
G_3(13) = B_4(4^(4+1)+3*4^3+3*4^2+3*4+3)-1 = 5^(5+1)+3*5^3+3*5^2+3*5+3-1 = 16092;
G_4(13) = B_5(5^(5+1)+3*5^3+3*5^2+3*5+2)-1 = 6^(6+1)+3*6^3+3*6^2+3*6+2-1 = 280711;
G_5(13) = B_6(6^(6+1)+3*6^3+3*6^2+3*6+1)-1 = 7^(7+1)+3*7^3+3*7^2+3*7+1-1 = 5765998;
G_6(13) = B_7(7^(7+1)+3*7^3+3*7^2+3*7)-1 = 8^(8+1)+3*8^3+3*8^2+3*8-1 = 134219479;
G_7(13) = B_8(8^(8+1)+3*8^3+3*8^2+2*8+7)-1 = 9^(9+1)+3*9^3+3*9^2+2*9+7-1 = 3486786855.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {my(a=13); print1(a, ", "); for (n=2, nn, my(pd = Pol(digits(a, n)), q = sum(k=0, poldegree(pd), my(c=polcoeff(pd, k)); if (c, c*x^subst(Pol(digits(k, n)), x, n+1), 0))); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A271561 a(n) = G_n(14), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

14, 110, 1281, 18750, 326591, 5862840, 134404971, 3487116548, 100000555551, 3138429262496, 106993206736331, 3937376387710451, 155568095560708189, 6568408355716958693, 295147905179358418247, 14063084452067732533983, 708235345355337686361209, 37589973457545958206423881
Offset: 0

Views

Author

Natan Arie Consigli, Apr 13 2016

Keywords

Examples

			G_1(14) = B_2(14)-1 = B_2(2^(2+1)+2^2+2)-1 = 3^(3+1)+3^3+3-1 = 110;
G_2(14) = B_3(3^(3+1)+3^3+2)-1 = 4^(4+1)+4^4+2-1 = 1281;
G_3(14) = B_4(4^(4+1)+4^4+1)-1 = 5^(5+1)+5^5+1-1 = 18750;
G_4(14) = B_5(5^(5+1)+5^5)-1 = 6^(6+1)+6^6-1 = 326591.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A266201: G_n(n).

Programs

  • PARI
    lista(nn) = {print1(a = 14, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }

A271562 a(n) = G_n(17), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

17, 7625597484987, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084095
Offset: 0

Views

Author

Natan Arie Consigli, Apr 13 2016

Keywords

Examples

			G_1(17) = B_2(17)-1 = B_2(2^2^2+1)-1 = 3^3^3+1-1 = 7625597484987;
G_2(17) = B_3(3^3^3)-1 = 4^4^4-1 has 155 digits;
G_3(17) has 328 digits.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A271561: G_n(14), A266201: G_n(n).

A271991 g_n(10) where g is the weak Goodstein function defined in A266202.

Original entry on oeis.org

10, 29, 65, 125, 215, 284, 363, 452, 551, 660, 779, 907, 1045, 1193, 1351, 1519, 1697, 1885, 2083, 2291, 2509, 2737, 2975, 3222, 3479, 3746, 4023, 4310, 4607, 4914, 5231, 5558, 5895, 6242, 6599, 6966, 7343, 7730, 8127, 8534, 8951
Offset: 0

Views

Author

Natan Arie Consigli, May 22 2016

Keywords

Comments

For more info see A266201-A266202.

Crossrefs

Cf. A271557: G_n(10).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A271988: g_n(7); A271989: g_n(8); A271990: g_n(9); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Programs

  • Mathematica
    g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 10], {n, 0, 40}]

A271975 a(n) = G_n(18), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

18, 7625597484989, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097
Offset: 0

Views

Author

Natan Arie Consigli, Apr 24 2016

Keywords

Examples

			G_1(18) = B_2(18)-1 = B_2(2^2^2+2)-1 = 3^3^3+3-1 = 7625597484989;
G_2(18) = B_3(3^3^3+2)-1 = 4^4^4+2-1 has 154 digits;
G_3(18) = B_4(4^4^4+1)-1 = 5^5^5 has 2184 digits;
G_4(18) = B_5(5^5^5)-1 = 6^6^6-1 = has 36305 digits.
		

Crossrefs

Cf. A215409: G_n(3), A056193: G_n(4), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A271561: G_n(14), A222117: G_n(15), A059933: G_n(16), A271562: G_n(17), A211378: G_n(19), A266201: G_n(n).

A271992 g_n(16) where g is the weak Goodstein function defined in A266202.

Original entry on oeis.org

16, 80, 169, 310, 515, 795, 1163, 1631, 2211, 2915, 3755, 4742, 5889, 7208, 8711, 10410, 12317, 14444, 16803, 19406, 22265, 25392, 28799, 32472, 36447, 40736, 45351, 50304, 55607, 61272, 67311, 73736, 80559, 87792, 95447, 103536, 112071
Offset: 0

Views

Author

Natan Arie Consigli, May 24 2016

Keywords

Comments

For more information see A266201 and A266202.

Crossrefs

Cf. A271557: G_n(10).
Weak Goodstein sequences: A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A271988: g_n(7); A271989: g_n(8); A271990: g_n(9); A271991: g_n(10); A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0.

Programs

  • Mathematica
    g[k_, n_] :=
    If[k == 0, n,
      Total@Flatten@
           MapIndexed[#1 (k + 2)^(#2 - 1) &,
            Reverse@IntegerDigits[#, k + 1]] &@g[k - 1, n] - 1]; Table[
    g[n, 16], {n, 0, 36}]

A271976 a(n) = G_n(20), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

20, 7625597485013, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084137
Offset: 0

Views

Author

Natan Arie Consigli, Apr 24 2016

Keywords

Examples

			G_1(20) = B_2(20)-1 = B_2(2^2^2+2^2)-1 = 3^3^3+3^3-1 = 7625597485013;
G_2(20) = B_3(3^3^3+2*3^2+2*3+2)-1 = 4^4^4+2*4^2+2*4+2-1  has 154 digits;
G_3(20) = B_4(4^4^4+2*4^2+2*4+1)-1 = 5^5^5+2*5^2+2*5+1-1 has 2184 digits.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A271561: G_n(14), A271562: G_n(17), A271975: G_n(18), A266201: G_n(n).

A296441 Array A(n, k) = G_k(n) where G_k(n) is the k-th term of the Goodstein sequence of n, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 2, 3, 0, 0, 1, 3, 4, 0, 0, 0, 3, 26, 5, 0, 0, 0, 2, 41, 27, 6, 0, 0, 0, 1, 60, 255, 29, 7, 0, 0, 0, 0, 83, 467, 257, 30, 8, 0, 0, 0, 0, 109, 775, 3125, 259, 80, 9, 0, 0, 0, 0, 139, 1197, 46655, 3127, 553, 81, 10, 0, 0, 0, 0, 173, 1751, 98039, 46657, 6310, 1023, 83, 11
Offset: 0

Views

Author

Iain Fox, Dec 12 2017

Keywords

Comments

G_0(n) = n. To get to the second term in the row, convert n to hereditary base 2 representation (see links), replace each 2 with a 3, and subtract 1. For the third term, convert the second term (G_1(n)) into hereditary base 3 notation, replace each 3 with a 4, and subtract one. This pattern continues until the sequence converges to 0, which, by Goodstein's Theorem, occurs for all n.

Examples

			| n\k |  0   1    2     3      4      5       6       7       8       9  ...
|-----|------------------------------------------------------------------------
|  0  |  0,  0,   0,    0,     0,     0,      0,      0,      0,      0, ...
|  1  |  1,  0,   0,    0,     0,     0,      0,      0,      0,      0, ...
|  2  |  2,  2,   1,    0,     0,     0,      0,      0,      0,      0, ...
|  3  |  3,  3,   3,    2,     1,     0,      0,      0,      0,      0, ...
|  4  |  4, 26,  41,   60,    83,   109,    139,    173,    211,    253, ...
|  5  |  5, 27, 255,  467,   775,  1197,   1751,   2454,   3325,   4382, ...
|  6  |  6, 29, 257, 3125, 46655, 98039, 187243, 332147, 555551, 885775, ...
| ... |
		

Crossrefs

n-th row: A000004 (n=0), A000007 (n=1), A215409 (n=3), A056193 (n=4), A266204 (n=5), A266205 (n=6), A271554 (n=7), A271555 (n=8), A271556 (n=9), A271557 (n=10), A271558 (n=11), A271559 (n=12), A271560 (n=13), A271561 (n=14), A222117 (n=15), A059933 (n=16), A271562 (n=17), A271975 (n=18) A211378 (n=19), A271976 (n=20).
k-th column: A001477 (k=0), A056004 (k=1), A057650 (k=2), A059934 (k=3), A059935 (k=4), A059936 (k=5), A271977 (k=6), A271978 (k=7), A271979 (k=8), A271985 (k=9), A271986 (k=10).
G_n(n) = A266201(n) (main diagonal of array).

Programs

  • PARI
    B(n, b)=sum(i=1, #n=digits(n, b), n[i]*(b+1)^if(#n
    				
Showing 1-10 of 10 results.