A266202 Weak Goodstein numbers: a(n) = g_n(n), where g_n(n) is the weak Goodstein function.
0, 0, 1, 2, 11, 21, 43, 69, 211, 389, 779, 1276, 2753, 3405, 4167, 5029, 12317, 21691, 42083, 68050, 234257, 279872, 331871, 390781, 458271, 533659, 618679, 713344, 831407, 953343, 1081455, 1222053, 2753231, 4634203, 8637959, 13483492, 49254279, 90224223, 102400127
Offset: 0
Keywords
Examples
Find a(5) = g_5(5): g_0(5) = 5; g_1(5) = b_2(5)-1 = b_2(2^2+1)-1 = 3^2+1-1 = 9; g_2(5) = b_3(3^2)-1 = 4^2-1 = 15; g_3(5) = b_4(3*4 + 3)-1 = 3*5+3-1 = 17; g_4(5) = b_5(3*5 + 2)-1 = 3*6 + 2-1 = 19; g_5(5) = b_6(3*6 + 1)-1 = 3*7+1-1 = 21.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Googology Wiki, Weak Goodstein sequence, see below.
Crossrefs
Programs
-
Mathematica
g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, n], {n, 0, 38}] (* Michael De Vlieger, Mar 18 2016 *)
-
PARI
a(n) = {if (n == 0, return (0)); wn = n; for (k=2, n+1, pd = Pol(digits(wn, k)); wn = subst(pd, x, k+1) - 1;); wn;} \\ Michel Marcus, Feb 23 2016
-
PARI
a(n) = {if (n == 0, return (0)); wn = n; for(k=2, n+1, vd = digits(wn, k); wn = fromdigits(vd, k+1) - 1;); wn;} \\ Michel Marcus, Feb 19 2017
Extensions
More terms from Michel Marcus, Feb 23 2016
Comments